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1 Introduction

Until now, although motivated by certain random input, we dealt with the Stochastic
Navier-Stokes equations as if they were deterministic: given a single noise realization, we
solve the equation.

This is possible in relatively few cases. The case treated above had the special feature
that the random input was independent of the solution. But in real situations, as in the
figure (discussed in a section below)

the noise may vary depending on the solution.
Mathematically speaking, in the previous chapter the noise entered the equation as

an additive force; this was the key property which allowed us to study the linear Stokes
problem first, independently of the solution of the nonlinear one. There are other cases
(different from the additive case) which can be treated by similar ideas, but few.

If we have an equation of the form

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) + σ (u) ∂tW

div u = 0
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where the distributional derivative ∂tW is multiplied by a function of the solution, we are
in trouble. The problem is not just the fact that the Stokes problem

∂tz +∇q = ν∆z + σ (u) ∂tW

div z = 0

depends on u: this problem in principle could be solved by an iteration. The problem is
that we cannot apply the trick of integration by parts in the mild formula for z:

z (t) = etAz0 +

∫ t

0
e(t−s)Aσ (u (s)) ∂sW (s) ds

= etAz0 +
[
e(t−s)Aσ (u (s))W (s)

]s=t
s=0
−
∫ t

0

d

ds

(
e(t−s)Aσ (u (s))

)
W (s) ds

= etAz0 + σ (u (t))W (t)− etAσ (u (0))W (0)

+

∫ t

0
Ae(t−s)Aσ (u (s))W (s) ds+

∫ t

0
e(t−s)A d

ds
σ (u (s))W (s) ds

and
d

ds
σ (u (s)) = 〈Dσ (u (s)) , ∂su (s)〉

brings again into play the term ∂sW (s).
One way to escape this problem is using the theory of rough paths, which however

is quite elaborated for our purposes. The most classical way is, when W is related to
Brownian motions, to use stochastic calculus. The purpose of this chapter is illustrating
the technique to study the Stochastic Navier-Stokes equations by stochastic calculus.

Remark 1 The reader certainly noticed that we have introduced, in parallel to σ (u) ∂tW ,
also a term F (u). This is not for generality, which clearly is not our purpose in these
notes. The reason is deep: if we introduce a term σ (u) ∂tW , we also need to introduce a
compensator F (u), otherwise the Physics is wrong. This is Wong-Zakai principle: we shall
describe it in two particular cases, in this and the next chapters.

1.1 Filtered probability space

Let (Ω,F ,P) be a probability space. A filtration indexed by t ≥ 0 is a family (Ft)t≥0

of σ-algebras such that Ft1 ⊂ Ft2 ⊂ F for every t1 ≤ t2. We call
(

Ω,F , (Ft)t≥0 ,P
)
a

filtered probability space, and we abbreviate (Ω,F ,Ft,P). A stochastic process (Xt)t≥0

on (Ω,F ,Ft,P), taking values in a measurable space, is adapted if Xt is Ft-measurable
for every t ≥ 0. It is progressively measurable if the map (s, ω) 7→ Xs (ω) is measurable
on ([0, t]× Ω,B (0, t)⊗Ft) for every t ≥ 0 (B (0, t) being the Borel σ-algebra on [0, t]).
When the target space is metric with the Borel σ-algebra, and the process is continuous,
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the concepts of adapted and progressively measurable are equivalent. When we deal with
processes such that, with respect to the time variable, are equivalence classes (with respect
to zero sets for the Lebesgue measure on the time interval), like L2 (0, T ;V ), we cannot
use the concept of adapted process since Xt (given t) is not well defined. In this case we
always use the concept of progressively measurable: for every t, the restriction on [0, t] is
a well defined equivalence class and the definition applies to it.

Denote by L2
Ft (Ω, H) the space of random variables (in fact equivalence classes) X :

Ω → H that are Ft-measurable and square integrable. We denote by CF ([0, T ] ;H) the
space of continuous adapted processes (Xt)t∈[0,T ] with values in H such that

E

[
sup
t∈[0,T ]

‖Xt‖2H

]
<∞

and by L2
F (0, T ;V ) the space of progressively measurable processes (Xt)t∈[0,T ] with values

in V such that

E
[∫ T

0
‖Xt‖2V dt

]
<∞.

Of course we may use similar notations also with different spaces in place of H and V ; this
is just the most common case in the sequel.

A (real valued) Brownian motion on (Ω,F ,Ft,P) is a continuous adapted process
(Wt)t≥0 such that P (Wt = 0) = 1, Wt − Ws is independent of Fs for every t ≥ s ≥ 0,
and Wt − Ws is a centered Gaussian random variable with variance t − s (we write
Wt −Ws ∼ N (0, t− s)). With probability one, paths are not only continuous but also
locally Hölder continuous with any Hölder exponent α < 1

2 .
The noise used in Chapter 1 had the form

W (t, x) :=
∑
k∈K

√
λkσk (x)W k

t (1)

where K is a finite set, σk ∈ D (A),
(
W k
t

)
t≥0

are independent Brownian motions on some
filtered probability space (Ω,F ,Ft,P). With probability one, the path t 7→ W (t, ·) is of
class C ([0, T ] ;D (A)) (also Cα ([0, T ] ;D (A)) for every α < 1

2).
In the previous chapter we have denoted by τk the average intertimes between creation

of new eddies. Here we use the quantity

λk =
1

τk

which has the meaning of rate of eddy production. The reason is that, below, we modify
the model with state-dependent rates and the notational analogy will be easier.
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2 Additive noise under the view of stochastic calculus

Let us elaborate the result of Chapter 1 under the view of stochastic calculus. Consider
the Itô type equation, in d = 2,

du+ (u · ∇u+∇p) dt = ν∆udt+
∑
k∈K

√
λkσkdW

k
t (2)

div u = 0

with

u|∂D = 0

u(0) = u0.

Definition 2 Given a filtered probability space (Ω,F ,Ft,P) and the noise W (t, x) as in
(1), given u0 : Ω → H, F0-measurable, we say that a process u is a solution of equation
(2), if its paths are of class

u ∈ C ([0, T ] ;H) ∩ L2 (0, T ;V )

with probability one, it is adapted as a process in H, progressively measurable in V , and

〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉+

∫ t

0
〈u (s) , Aφ〉 ds+

∑
k∈K

√
λk 〈σk, φ〉W k

t

for every φ ∈ D (A).

Theorem 3 There exists a unique solution.

Proof. Given two solutions, with probability one their paths are two solutions in the sense
of the theorem of the previous Chapter, hence they coincide. Path by path the existence
of u (ω) is given by that theorem; since W is measurable, also u is measurable. But the
measurability result can be applied on any subinterval [0, t], the process u being always the
same (namely the restriction to [0, t] of the process on [0, T ]), hence we have progressive
measurability, which gives also adaptedness in H due to continuity.

We want now to apply Itô formula to compute

d ‖u (t)‖2L2 .

Let us recall, for comparison, that when Xt is a process in Rd satisfying the equation

dXi
t = bitdt+

∑
k∈K

σikt dW
k
t
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and f is a function of class C2
(
Rd
)
, then

df (Xt) =

d∑
i=1

∂if (Xt) dX
i
t +

1

2

d∑
i,j=1

∑
k∈K

∂i∂jf (Xt)σ
ik
t σ

jk
t dt

where we have to replace dXi
t by the equation. Rigorously, all these identities have to be

interpreted in integral form and the stochastic processes Xi
t , b

i
t, σ

ik
t are assumed progres-

sively measurable. In order to apply these facts we need a progressively measurable process
(and this is provided by the previous theorem) and a finite dimensional reduction.

Theorem 4 If E ‖u0‖2L2 <∞ then

u ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

and

E
[
‖u (t)‖2L2

]
+ 2ν

∫ t

0
E ‖∇u (s)‖2L2 ds = E

[
‖u0‖2L2

]
+ t

∑
k∈K

λk ‖σk‖2L2

E

[
sup
t∈[0,T ]

‖u (t)‖2L2

]
≤ E

[
‖u0‖2L2

]
+ T

∑
k∈K

√
λk ‖σk‖2L2 + C

∑
k∈K

λkE
∫ T

0
〈u (s) , σk〉2 ds.

Proof. Taken a complete orthonormal system in H, (ei), made of eigenvectors of A, with
eigenvalues (−λi), called Hn the finite dimensional space generated by e1, .., en and πn the
projection onto Hn, called un (t) = πnu (t), called finally

bn (u (s)) :=

n∑
i=1

b (u (s) , u (s) , ei) ei

we have (from the weak formulation applied to each ei)

un (t) +

∫ t

0
bn (u (s)) ds = πnu0 +

∫ t

0
Aun (s) ds+ πnW (t) .

Taken the function fn (x) =
∑n

i=1 〈x, ei〉
2, which has the properties ∂ifn (x) = 2 〈x, ei〉,

∂i∂jfn (x) = 2δij , using the fact that, with σikt =
√
λk 〈σk, ei〉, one has

∑∞
i=1

(
σikt
)2

=

λk ‖σk‖2L2 , the classical Itô formula gives us

d ‖un (t)‖2L2 = 2 〈un (t) , dun (t)〉+
∑
k∈K

λk ‖πnσk‖2L2 dt

= −2ν ‖∇un (t)‖2L2 dt+
∑
k∈K

λk ‖πnσk‖2L2 dt

+2
∑
k∈K

√
λk 〈un (t) , πnσk〉 dW k

t + b (u (s) , u (s) , un (s)) dt
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where we have used

〈un (s) , bn (u (s))〉 = b (u (s) , u (s) , un (s)) .

This identity has to be interpreted in integral form. Using the convergence properties of
πn and the regularity of u, it is not diffi cult to pass to the limit and obtain

‖u (t)‖2L2 + 2ν

∫ t

0
‖∇u (s)‖2L2 ds = ‖u0‖2L2 + t

∑
k∈K

λk ‖σk‖2L2 (3)

+2
∑
k∈K

√
λk

∫ t

0
〈u (s) , σk〉 dW k

s

where the last term is an Itô-integral. In order to take expected values we have to use a
localization argument that we explain here forever, namely we omit the repetition below
when it is used several times. For sake of simplicity of notations assume that u is a solution
defined for all t ≥ 0 (we can do this, T is arbitrary).For every R > 0, let τR be the stopping
time defined as

τR = inf {t > 0 : ‖u (t)‖L2 > R}

or equal to +∞ if the set is empty. Compute the previous identity at time t∧ τR (it helps
the fact that the process u is continuous in H):

‖u (t ∧ τR)‖2L2 + 2ν

∫ t

0
1s≤τR ‖∇u (s)‖2L2 ds = ‖u0‖2L2 + (t ∧ τR)

∑
k∈K

λk ‖σk‖2L2

+2
∑
k∈K

√
λk

∫ t

0
1s≤τR 〈u (s) , σk〉 dW k

s .

Now E
∫ T

0 1s≤τR 〈u (s) , σk〉2 ds < ∞ hence the Itô integrals of this identity are true mar-
tingales; their expected values are thus equal to zero. Moreover, the other terms on the
right-hand-side have finite expected value, hence the same is true for the sum of the two
terms on the left-hand-side, and then also individually for each of them, being non-negative.
We get

E
[
‖u (t ∧ τR)‖2L2

]
+ 2νE

∫ t

0
1s≤τR ‖∇u (s)‖2L2 ds

= E
[
‖u0‖2L2

]
+ E [t ∧ τR]

∑
k∈K

λk ‖σk‖2L2 .

Since limR→∞ τR = +∞, and u is continuous in H, we deduce as R→∞

E
[
‖u (t)‖2L2

]
+ 2νE

∫ t

0
‖∇u (s)‖2L2 ds = E

[
‖u0‖2L2

]
+ t

∑
k∈K

λk ‖σk‖2L2 .
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From this result, which is already part of the thesis, we deduce u ∈ L2
F (0, T ;V ). In

order to prove u ∈ CF ([0, T ] ;H) we restart from (3) where now, as a consequence of the
estimates just proved, we know that the Itô integrals are square integrable martingales.
Let us simplify (3) into

‖u (t)‖2L2 ≤ ‖u0‖2L2 + t
∑
k∈K

λk ‖σk‖2L2 + 2
∑
k∈K

√
λk

∫ t

0
〈u (s) , σk〉 dW k

s .

By Doob’s inequality,

E

[
sup
t∈[0,T ]

‖u (t)‖2L2

]
≤ E

[
‖u0‖2L2

]
+ T

∑
k∈K

λk ‖σk‖2L2

+C
∑
k∈K

λkE
∫ T

0
〈u (s) , σk〉2 ds

and the right-hand-side is bounded as in the statement of the theorem. Hence in particular
u ∈ CF ([0, T ] ;H).

2.1 Consequences

The message we get from this theorem is manifold.

• The solution has integrability properties in ω reflecting analogous properties assumed
on the data.

• In the modeling of emergence of vortices developed in the previous section we have
made a mistake: creating vortices from nothing we introduce energy into the system.
Therefore we have to include an extra dissipation mechanism. There is a loss of
energy due to the impact of the flow with the obstacle (which, let us remember,
is not included into the boundary conditions); part of this energy is given back in
the form of emerging vortices. We do not have a suffi ciently good solution to this
mistake, which then we leave as an open problem. A possible proposal is adding a
friction term −λ (x)u

du+ (u · ∇u+∇p) dt = (ν∆u− λ (x)u) dt+
∑
k∈K

√
λkσkdW

k
t

with a friction coeffi cient possibly depending on x and localized near the boundary:
in this way the Physical idea is that energy of large scales is subtracted near the
boundary; and re-injected through the vortices σk. The energy balance is now

E
[
‖u (t)‖2L2

]
+ 2ν

∫ t

0
E ‖∇u (s)‖2L2 ds+ 2E

∫ t

0

∫
D
λ (x) |u (s, x)|2 dxds

= E
[
‖u0‖2L2

]
+ t

∑
k∈K

λk ‖σk‖2L2 .
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But we should be able to choose λ (x) in such a way that

2E
∫ t

0

∫
D
λ (x) |u (s, x)|2 dxds ∼ t

∑
k∈K

λk ‖σk‖2L2 .

We do not know how to reach this target.

• Assume u (t) is a statistically stationary solution; this implies that E ‖u (t)‖2L2 =
E ‖u0‖2L2 and E ‖∇u (s)‖2L2 is independent s, which then we denote by E ‖∇u‖

2
L2 .

Then, stressing the dependence of u on ν,

ε := νE ‖∇uν‖2L2 ds =
1

2

∑
k∈K

λk ‖σk‖2L2 .

The dissipation ε of energy due to viscosity remains constant in the inviscid limit
ε→ 0 (it is a statement of K41 theory), if the energy injection is constant.

• We may use a small variant of the previous result to study state-dependent noise by
iterations, see below.

2.2 Example of state-dependent noise

In Chapter 1 we have introduced a noise modeling the emergence of vortices at a boundary
due to instability. However, when the fluid is at rest, certainly no vortex is created;
similarly, we do not expect frequent creations if the velocity of the flow is very small. The
rate of creation of vortices hence should depend on some feature of the flow itself. This
doesn’t mean that the model of the previous Chapter is useless: it is reasonable when the
mean flow is roughly constant, and the rates τk should be taken appropriately with respect
to the constant mean flow value.

When the state u (t, ·) affects the rate of creation, we may use the concept of non-
homogeneous Poisson process with random time-dependent rate: we introduce (correspond-
ing to each k) an instantaneous rate λk (u (t)) depending on an average intensity of u (t, ·),
e.g.

λk (u (t)) = χ2

(
1

|B (xk, r)|

∫
B(xk,r)

|u (t, y)| dy
)

where χ2 is a nondecreasing non-negative function, equal to zero in zero and r > 0 is a
length scale relevant to the problem. Then we introduce the cumulative rate

Λk (t) =

∫ t

0
λk (u (s)) ds

and finally we modify the Poisson process Nk
t by this rate, namely we consider the process

Nk
Λk(t).
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The case previously considered was simply

λk (u (t)) = λk, Λk (t) = λk, Nk
λkt
.

The jump times of the noise in the equation will be the jump times of this processes, which
are delayed or accelerated depending on the average intensity of u (t):

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +
∑
k∈K

σk∂tN
k
Λk(t) (4)

or
∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +

∑
k∈K

1√
2
σk∂t

(
Nk,1

Λk(t) −N
k,2
Λk(t)

)
(5)

depending whether we assume that both vortices σk (x) and −σk (x) appear and are equally
likely.

This is already a very interesting model which could deserve investigation. Otherwise,
in the case of (5), we may rescale the noise as∑

k∈K

1

n
√

2
σk (x)

(
Nk,1
n2Λk(t)

−Nk,2
n2Λk(t)

)
. (6)

Notice that, in order to increase the rate at time t, we have to use the instantaneous
rate n2λk (t), whence the expression n2Λk (t) (instead of Λk

(
n2t
)
which has a completely

different and wrong meaning).
Recalling the convergence of rescaled Poisson processes to Brownian motion discussed

in Chapter 1, it can be proved that the limit process of (6), in law, is∑
k∈K

σk (x)Bk
Λk(t)

where Bk
t are independent Brownian motions. Then, by a deep theorem on martingales,

there exists (possibly on a larger probability space) independent Brownian motions W k
t

such that, in law

Bk
Λk(t) =

∫ t

0

√
λk (u (s))dW k

s

(jointly in k). This result in undoubtedly advanced and not trivial even at the heuristic
level but notice at least the analogy with the coeffi cients

√
λk in the case of constant rate:

when λk (u (s)) = λk, Λk (t) = λk, the previous identity reads

Bk
λkt

=

∫ t

0

√
λkdW

k
s =

√
λkW

k
t

and it is well known that λ−1/2
k Bk

λkt
is a new Brownian motion.
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The final equation is

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +
∑
k∈K

σk
√
λk (u)∂tW

k
t .

We write it in the form

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +
∑
k∈K

σk (u) ∂tW
k
t (7)

by introducing the maps σk : H → H given by

σk (u) (x) = σk (x)
√
λk (u).

2.3 The Wong-Zakai corrector

Equations (4)-(5) are mathematically correct (whether they are physically relevant, it
should be investigated more deeply). On the contrary, equation (7) requires a special
choice of F (u) to be the right one:

F (u) =
1

2

∑
k∈K

Dσk (u)σk (u) .

Here byDσk (u) we mean the Frechét Jacobian of σk (u), which is a linear bounded operator
fromH toH, under suitable assumptions, andDσk (u)σk (u) is the application of the linear
map Dσk (u) to the element σk (u) of H. We do not know whether a full proof of this fact
has been given and under which assumptions. We assume this is the correct result by
heuristic extension of a known argument for finite dimensional equations. Let us explain
it in the simple case of a one-dimensional equation.

Consider the one dimensional equation, with σ (x) ≥ ν > 0,

dXε
t

dt
= σ (Xε

t )
dW ε

t

dt

where W ε
t is an approximation of a Brownian motion Wt. It is an equation with separated

variables. Then
dXε

t
dt

σ (Xε
t )

=
dW ε

t

dt∫ T

0

dXε
t

dt

σ (Xε
t )
dt =

∫ T

0

dW ε
t

dt
dt

Φ (Xε
T )− Φ (x0) = W ε

T , Φ′ (x) =
1

σ (x)

Xε
t = Φ−1 (Φ (x0) +W ε

t )

10



Hence Xε
· converges weakly to X· given by

Xt = Φ−1 (Φ (x0) +Wt) .

From Ito formula, since

DΦ−1 (x) =
1

Φ′ (Φ−1 (x))
= σ

(
Φ−1 (x)

)
D2Φ−1 (x) = D

[
σ
(
Φ−1 (x)

)]
= σ′

(
Φ−1 (x)

)
DΦ−1 (x)

= σ′
(
Φ−1 (x)

)
σ
(
Φ−1 (x)

)
dXt = σ

(
Φ−1 (Φ (x0) +Wt)

)
dWt +

1

2
σ′
(
Φ−1 (Φ (x0) +Wt)

)
σ
(
Φ−1 (Φ (x0) +Wt)

)
dt

= σ (Xt) dWt +
1

2
σ′ (Xt)σ (Xt) dt.

We have found the corrector above.
Our conclusion, supported by the previous heuristic evidences, is that the right sto-

chastic equations is

∂tu+ u · ∇u+∇p = ν∆u+ f +
1

2

∑
k∈K

Dσk (u)σk (u) +
∑
k∈K

σk (u) ∂tW
k
t .

Remark 5 There is a notion of stochastic integral, different from the Itô one, called
Stratonovich integral and denoted by

∫ t
0 σk (u (s)) ◦ dW k

s , such that∫ t

0
σk (u (s)) ◦ dW k

s =

∫ t

0
σk (u (s)) dW k

s +
1

2

∫ t

0
Dσk (u (s))σk (u (s)) ds

when u solves equation above. Therefore, with such notion, the equation has the form

∂tu+ u · ∇u+∇p = ν∆u+ f +
∑
k∈K

σk (u) ◦ ∂tW k
t .

3 2D Stochastic Navier-Stokes equations

Consider now the equations

∂tu+ u · ∇u+∇p = ν∆u+ f + F (u) +
∑
k∈K

σk (u) ∂tW
k
t (8)

div u = 0
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with

u|∂D = 0

u (0) = u0.

Assume

F ∈ Lip (H,H)

σk ∈ Lip (H,H) ∩ C (H,D (A)) , bounded in H, k ∈ K.

With some additional elements of stochastic analysis (Itô formula for ‖u (t)‖p
L2
and Burkholder-

Davis-Gundy inequality) one can drop the assumption that σk are bounded, so it is made
here only for simplicity of exposition. The assumption C (H,D (A)) is also made just for
simplicity, but it is clear from the estimates below that it is absolutely unessential.

Definition 6 Given u0 ∈ H and f ∈ L2 (0, T ;V ′), we say that

u ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

is a weak solution of equation (8) if

〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉+

∫ t

0
〈u (s) , Aφ〉 ds+

∫ t

0
〈f (s) , φ〉 ds

+

∫ t

0
〈F (u (s)) , φ〉 ds+

∑
k∈K

∫ t

0
〈σk (u (s)) , φ〉 dW k

s

for every φ ∈ D (A).

Theorem 7 For every u0 ∈ L2
F0 (Ω, H) and f ∈ L2

F (0, T ;V ′), there exists a unique weak
solution of equation (8). It satisfies

E
[
‖u (t)‖2L2

]
+ 2νE

∫ t

0
‖∇u (s)‖2L2 ds

= E
[
‖u0‖2L2

]
+ 2E

∫ t

0
〈u (s) , f (s) + F (u (s))〉 ds

+
∑
k∈K

E
∫ t

0
‖σk (u (s))‖2L2 ds.

12



Remark 8 We have taken deterministic data for simplicity, but extensions to random
data are possibile. Uniqueness holds under the natural assumption u0 ∈ L2

F0 (Ω, H) and
f ∈ L2

F (0, T ;V ′). Existence requires the same assumption plus the additional integrability

E [‖u0‖rH ] <∞, E
∫ t

0
‖f (s)‖rV ′ ds <∞ (9)

for some r > 2.

3.1 Proof of uniqueness

Let u(i) be two solutions. Then w = u(1) − u(2) satisfies

〈w (t) , φ〉 −
∫ t

0

(
b
(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

))
(s) ds

=

∫ t

0
〈w (s) , Aφ〉 ds+

∫ t

0

〈
F
(
u(1) (s)

)
− F

(
u(2) (s)

)
, φ
〉
ds

+
∑
k∈K

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, φ
〉
dW k

s

and since

b
(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

)
− b (w, φ,w)

= b
(
u(2), φ, w

)
+ b

(
w, φ, u(2)

)
we get

〈w (t) , φ〉 −
∫ t

0
(b (w (s) , φ, w (s))) ds

=

∫ t

0
〈w (s) , Aφ〉 ds+

∫ t

0

〈
F
(
u(1) (s)

)
− F

(
u(2) (s)

)
, φ
〉
ds

+
∑
k

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, φ
〉
dW k

s

−
∫ t

0

(
b
(
u(2), φ, w

)
+ b

(
w, φ, u(2)

))
(s) ds.

13



We need the Itô formula to continue; it can be proved similarly to Theorem 4. It gives us

‖w (t)‖2H + 2ν

∫ t

0
‖∇w (s)‖2H ds = 2

∫ t

0

〈
F
(
u(1) (s)

)
− F

(
u(2) (s)

)
, w (s)

〉
ds

−2

∫ t

0

(
b
(
u(2), w, w

)
+ b

(
w,w, u(2)

))
(s) ds

+
∑
k∈K

∫ t

0

∥∥∥σk (u(1) (s)
)
− σk

(
u(2) (s)

)∥∥∥2

L2
ds

+Mt

where

Mt :=
∑
k

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, w (s)

〉
dW k

s .

Therefore, if LF and Lk are the Lipschitz constants of F and σk respectively, using estimates
of Chapter 1 we get

‖w (t)‖2H + ν

∫ t

0
‖∇w (s)‖2H ds ≤

(
2LF +

∑
k∈K

L2
k

)∫ t

0
‖w (s)‖2H ds

+C

∫ t

0
‖w (s)‖2H

(
1 +

∥∥∥u(2) (s)
∥∥∥2

L4

)
ds

+Mt.

We need now a very interesting trick that we have learned from Bjorn Schmalfuss: intro-
duced

ρt = exp

(
−C

∫ t

0

(
1 +

∥∥∥u(2) (s)
∥∥∥2

L4

)
ds

)
we have, from Itô formula again,

‖w (t)‖2H ρt + ν

∫ t

0
‖∇w (s)‖2H ρsds ≤

(
2LF +

∑
k∈K

L2
k

)∫ t

0
‖w (s)‖2H ρsds+ M̃t

where

M̃t :=
∑
k∈K

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, w (s)

〉
ρsdW

k
s .

Omitting the necessary localization argument entirely similar to the one used in Theorem
4, we get

E
[
‖w (t)‖2H ρt

]
+ νE

∫ t

0
‖∇w (s)‖2H ρsds

≤
(

2LF +
∑
k∈K

L2
k

)∫ t

0
E
[
‖w (s)‖2H ρs

]
ds

14



which leads to E
[
‖w (t)‖2H ρt

]
= 0 by Gronwall lemma. But, thanks to the regularity of

u(2), P (ρt > 0) = 1. Hence P (w (t) = 0) = 1. Since this is true for all t, the processes u(1)

and u(2) are modifications; but they are continuous, hence they are indistinguishable.

4 Proof of existence

4.1 Introduction

Existence for differential equations is a wide subject with many ideas. More or less, all
methods consist in the construction of a sequence, based on some approximation or iteration
method which allows to define the sequence by means of easier equations than the one
object of investigation. Then one has to prove convergence in a topology which allows one
to pass to the limit in the approximate equations. Linear terms pass to the limit under very
weak convergences, hence the demanding part for the limit step are the nonlinear terms.
When they have suitable monotonicity properties, again weak convergence is suffi cient,
but the Navier-Stokes nonlinearity does not have such properties. Strong convergence in
a topology like H is needed. Weak convergence does not suffi ce to take the limit in a
quadratic expression; the weak limit of the square is not the square of the weak limit, in
general.

We have insisted on this classification of ideas because the existence of weakly con-
vergent subsequences of an approximating scheme is an excellent property also in the
stochastic case, it applies for instance to spaces like L2 (Ω, B) with a Banach space B.
But the existence of strongly convergent subsequences of an approximating scheme is very
demanding, in the stochastic case. And for the Navier-Stokes equations we are faced with
this demanding problem.

Essentially there are two ways to get strong convergence: one is related to contraction
principle arguments and consists in the proof of the Cauchy property of the sequence, in
the strong topology, usually in expected value. This kind of argument is not easy to be
implemented for the Navier-Stokes equations. In the deterministic setting we have seen an
example of this technique in Chapter 1: for the auxiliary Navier-Stokes equations we have
constructed a sequence (vn) and proved it was Cauchy. In the stochastic case, performing
similar proofs is very diffi cult because of the problem of closure of moments: we have to
take expected values but the nonlinearity increases the order of the moment. Inspection
into the proof of Chapter 1 reveals we have used uniform bounds on the iterates to close
a certain inequality in the proof of the Cauchy property; in the deterministic case such
bounds are deterministic; in the stochastic case they are in expected value and thus not
easily applicable.

The alternative strategy to have strong convergence of subsequences is by compactness
theorems. However, here there is a structural problem: compactness in spaces like L2 (Ω, B)
is essentially impossible to be proven (except for criteria based on Malliavin calculus, which
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however did not prove to be competitive, until now). Thus one goes to compactness of the
laws, because compactness in spaces of measures is very well characterized.

But then the problem becomes that we have only subsequences of laws, which con-
verge in strong topologies. Namely, it is not strong convergence of the original stochastic
processes, only of their laws. How to identify a limit stochastic process and pass to the
limit in the equations?

Here there are several strategies, each one with advantages depending on a certain
feature of the problem; or, if not advantages, it is the only one we can use.

• When we can prove the so-called pathwise uniqueness, as above in the 2D case,
there is a brilliant criterion of Gyongy and Krylov which proves the convergence in
probability of the approximating sequence of stochastic processes, hence upgrading
the pure convergence in law. We shall explain this below.

• Alternative to this method, when pathwise uniqueness is known, is proving weak
convergence of the laws, construct a solution on an auxiliary probability space and
then use a theorem of Yamada-Watanabe type (which requires pathwise uniqueness)
to prove that a solution on the original probability space exists. This strategy looks
longer than the previous one, hence we prefer to describe Gyongy-Krylov approach.

• When pathwise uniqueness is not known or it is false, there is no way to upgrade the
weak convergence of laws to some kind of stronger convergence of the processes. In
this case Skorohod representation theorem allows one to reformulate the approximat-
ing sequence on a new, auxiliary probability space, where it converges also almost
surely, not only in law. Then one can pass to the limit. But the limit process lives in
an auxiliary probability space. This is the same strategy used in the previous item,
but not followed by a Yamada-Watanabe step. Hence the final result is just existence
on an auxiliary space.

• For special noise, like the additive one, when pathwise uniqueness is not known, there
is a trick to pass to the limit in the equation using just the weak convergence of the
laws, without performing the Skorohod representation theorem step. The limit law
is a solution of the equation, in a suitable sense. We shall describe this procedure
below. It applies for instance to the 3D Navier-Stokes equations with additive noise.

One may add several comments to the previous list, related for instance to the concept
of martingale solutions, but we limit ourselves to the previous discussion and show some
of the computations for the first and the last item.

4.2 Gyongy-Krylov convergence criterium

If (E, d) is a metric space we denote by
(
E2, d2

)
the product space with the metric

d2 ((x, y) , (x′, y′)) = d (x, y) + d (x′, y′); we understand that on every one of these met-
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ric spaces the σ-field is the Borel one; and we denote by D the diagonal:

D =
{

(x, x) ∈ E2;x ∈ E
}
.

Lemma 9 Let (Xn)n∈N be a sequence of random variables from a probability space (Ω,F ,P)
to a complete separable metric space (E, d). Assume that, for every pair of subsequences
((n1 (k) , n2 (k)))k∈N, with n1 (k) ≥ n2 (k) for every k ∈ N, there is a subsequence (k (h))h∈N
such that the random variables

(
Xn1(k(h)), Xn2(k(h))

)
h∈N from (Ω,F ,P) to

(
E2, d2

)
converge

in law to a measure µ on E2 such that µ (D) = 1. Then there exists a random variable X
from (Ω,F ,P) to (E, d) such that Xn converges to X in probability.

Proof. It is suffi cient to prove that (Xn)n∈N is Cauchy in probability: given ε > 0 we have
to find n0 such that for all n,m > n0 one has

P (d (Xn, Xm) ≥ ε) < ε.

Let us prove this by contradiction: we assume that there exists ε0 > 0 such that for every
k there are n1 (k) ≥ n2 (k) > k such that

P
(
d
(
Xn1(k), Xn2(k)

)
≥ ε0

)
≥ ε0.

We may perfection the construction in order to have that n1 (k) , n2 (k) are strictly increas-
ing, hence they are subsequences. But by assumption there exists a subsequence k (h) such
that

(
Xn1(k(h)), Xn2(k(h))

)
converges in law to µ, hence its probability of taking values in a

closed set is upper semicontinuous:

µ ((x, y) : d (x, y) ≥ ε0) ≥ lim supP
(
d
(
Xn1(k(h)), Xn2(k(h))

)
≥ ε0

)
≥ ε0.

This inequality is incompatible with µ (Dc) = 0, hence we have reached a contradiction.

4.3 Compactness criteria

4.3.1 Deterministic Ascoli-Arzelà theorem

A version of Ascoli-Arzelà theorem claims that, given two Banach spaces X
compact
⊂ Y ,

a family F ⊂ C ([0, T ] ;Y ) with the following two properties is relatively compact in
C ([0, T ] ;Y ):

i) {f (t) ; f ∈ F} is bounded in X
ii) F is uniformly equicontinuous in C ([0, T ] ;Y ), namely for every ε > 0 there is δ > 0

such that ‖f (t)− f (s)‖Y ≤ ε for every f ∈ F and t, s ∈ [0, T ] such that |t− s| ≤ δ.
In particular:

Proposition 10 If p > 1 and X
compact
⊂ Y , then

W 1,p (0, T ;X)
compact
⊂ C ([0, T ] ;Y ) .
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Indeed, if F ⊂W 1,p (0, T ;X) is bounded, and t ∈
[
T
2 , T

]
(similarly for t ∈

[
0, T2

]
)

f (t)− f (s) =

∫ t

s
f ′ (r) dr

f (t) =
2

T

∫ T/2

0
f (s) ds+

2

T

∫ T/2

0

∫ t

s
f ′ (r) drds

‖f (t)‖X ≤
2

T

∫ T/2

0
‖f (s)‖X ds+

2

T

∫ T/2

0

∫ t

s

∥∥f ′ (r)∥∥
X
drds

≤ 2

T
‖f‖L1(0,T ;X) +

∥∥f ′∥∥
L1(0,T ;X)

≤ C

and

‖f (t)− f (s)‖X ≤
∫ t

s

∥∥f ′ (r)∥∥
X
dr ≤

∥∥f ′∥∥
Lp(0,T ;X)

|t− s|q ≤ C |t− s|q

where 1
p+ 1

q = 1 and the constant C is independent of f ∈ F . So F satisfies the assumptions
of Ascoli-Arzelà theorem.

4.3.2 Deterministic Aubin-Lions type theorems

Given two Banach spaces X ⊂ Y , we say that the embedding X ⊂ Y is compact if bounded
sets of X are relatively compact in Y .

Theorem 11 Let X ⊂ Y ⊂ Z be three Banach spaces, with continuous dense embeddings.
Assume that the embedding X ⊂ Y is compact. Let p ∈ [1,∞) be given. Then the embedding

Lp (0, T ;X) ∩W 1,1 (0, T ;Z) ⊂ Lp (0, T ;Y )

is compact.

Remark 12 The previous theorem, when applied to functions spaces X ⊂ Y ⊂ Z, treats
the problem of compactness of functions of space-time. Heuristically, one needs a condition
of compactness for the space variable and one for the time variable and, a priori, one
could expect the need of some sort of joint compactness in the two variables. By Ascoli-
Arzelà theorem, the space or real-valued functionsW 1,2 (0, T ;R) is compactly embedded into
L2 (0, T ;R). The remarkable feature of the previous theorem is that the compactness in the
time variable does not require a simultaneous compactness in the space variable: the space
Z can be much larger than Y . Said differently, the two compactness requirements, in space
and time, are quite decoupled.

Remark 13 The consequence in examples is that the only key assumption turns out to be
Lp (0, T ;X), the other being a technical consequence based on the differential equation.
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Remark 14 Assume p > 1 and also assume the bound is in W 1,r (0, T ;Z) with r > 1.
The previous result means that, if we have a sequence of functions (un) (usually solutions
of an approximate equation) such that∫ T

0
‖un (t)‖pX dt+

∫ T

0

∥∥∥∥dun (t)

dt

∥∥∥∥r
Z

dt ≤ C

then there exists a subsequence (unk) and a function u ∈ Lp (0, T ;Y ) such that

lim
n→∞

∫ T

0
‖unk (t)− u (t)‖pY dt = 0.

Moreover, u ∈ Lp (0, T ;X) ∩W 1,r (0, T ;Z) and (unk) can be chosen so that it converges
weakly to u in Lp (0, T ;X) and in W 1,r (0, T ;Z) (it is here that we use p, r > 1). The weak
convergence in these topologies is a consequence of general theory of reflexive Banach spaces;
that it can be done for a unique subsequence is easy; that the limit in the strong topology
of Lp (0, T ;Y ) and weak topologies of Lp (0, T ;X) and W 1,r (0, T ;Z) is the same function
u, it requires some arguments that we omit (for instance: weak convergence in Lp (0, T ;X)
implies weak convergence in Lp (0, T ;Y ), hence the weak limit in these topologies is the
same as the strong limit in Lp (0, T ;Y ), by uniqueness between weak and strong limit in
Lp (0, T ;Y )). Moreover, in most examples we shall prove also a bound of the form

sup
t∈[0,T ]

‖un (t)‖Y ≤ C.

By the same arguments, one may have that (unk) converges also weak-star to u in L∞ (0, T ;Y ).

Finally, If Y
compact
⊂ Z, by Proposition 10 we may also add strong convergence of (unk) to

u in C ([0, T ] ;Z).

Essential for the stochastic case is the following generalization (see Simon [?], Corollary
5):

Theorem 15 If αr > 1− r
p (p, r ≥ 1) then

Lp (0, T ;X) ∩Wα,r (0, T ;Z)
compact
⊂ Lp (0, T ;Y )

Here α ∈ (0, 1) and Wα,r (0, T ;Z) is the space of functions f ∈ Lr (0, T ;Z) such that∫ T

0

∫ T

0

‖f (t)− f (s)‖rZ
|t− s|1+αr dsdt <∞.

Recall also that Wα,r (0, T ;Z) ⊂ C ([0, T ] ;Z) if αr > 1. The reason for asking this
generalization is that we do not have true time derivatives in the stochastic case, but we
have fractional time regularity.
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The property of continuity in time in Y of solutions sometimes follows a posteriori, from
the (S)PDE. Alternatively, we may try to prove convergence of the approximating scheme
in the uniform topology. Obviously Ascoli-Arzelà theorem provides uniform convergence
but the assumptions are too diffi cult to be checked in (S)PDEs like those of fluid mechanics
(let us remark, however, that Ascoli-Arzelà theorem is at the foundation of most proofs of
the compactness results illustrated here). To this purpose we may use the following result
of Simon [?], Corollary 9:

Theorem 16 Assume in addition (θ ∈ (0, 1))

‖v‖Y ≤ C ‖v‖
1−θ
X ‖v‖θZ θ ∈ (0, 1)

αr > 1 and p >
1− θ
θ

r

αr − 1
(p, r ≥ 1).

Then

Lp (0, T ;X) ∩Wα,r (0, T ;Z)
compact
⊂ C ([0, T ] ;Y ) .

4.3.3 Stochastic theory

Consider now a differential equation where the solution depends also on a random para-
meter,

u = u (ω, t, x) .

The principle that compactness can be investigated separately in the three arguments,
in principle, could still hold. However, the obstacle is that compactness in the random
parameter ω is not an easy matter. The probability space (Ω,F ,P) is always infinite
dimensional in our examples and compactness criteria in Lp (Ω) are not natural (although
something can be done by weighted Sobolev spaces and Malliavin calculus, when (Ω,F ,P)
has a special structure).

The natural approach is to consider the laws of the random objects and apply com-
pactness arguments to these laws. It is easier due to the following basic theorem. Let
(X, d) be a complete metric space and B the Borel σ-field. Recall we say that a family G
of probability measures on (X,B) is tight if for every ε > 0 there is a compact set K ⊂ X
such that

µ (K) ≥ 1− ε

for all µ ∈ G.

Theorem 17 (Prohorov) A family G of probability measures on (X,B) is tight if and
only if it is relatively compact.
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Corollary 18 Assume (uN ) is a sequence of random functions from (Ω,F ,P) to Lp (0, T ;Y ).
Assume αr > 1− r

p and that for every ε > 0 there are R1, R2 > 0 such that

P
(
‖uN‖Lp(0,T ;X) ≥ R1

)
≤ ε

P
(
‖uN‖Wα,r(0,T ;Z) ≥ R1

)
≤ ε.

Then there exists a subsequence (uNk) which converges in law, in the strong topology of

Lp (0, T ;Y ), to a random function ũ from a probability space
(

Ω̃, F̃ , P̃
)
to Lp (0, T ;Y ).

Moreover, if p, r > 1, we may chose (uNk) so that ũ takes also values in Lp (0, T ;X) and
Wα,r (0, T ;Z).

If uN are (Ft)-progressively measurable, there exists
(
F̃t
)
such that ũ is

(
F̃t
)
-progressively

measurable.

Recall that the convergence in law stated above means

lim
k→∞

E [Φ (uNk)] = Ẽ [Φ (ũ)]

for every bounded continuous function Φ : Lp (0, T ;Y )→ R. Here E and Ẽ are the expected
values on (Ω,F ,P) and

(
Ω̃, F̃ , P̃

)
respectively.

Remark 19 Suffi cient conditions for the applicability of the Corollary are uniform in N
estimates of the form

E
[
‖uN‖Lp(0,T ;X)

]
≤ C

E
[
‖uN‖Wα,r(0,T ;Z)

]
≤ C.

Indeed, by Markov inequality,

P
(
‖uN‖Lp(0,T ;X) ≥ R1

)
≤ C

R1

and similarly for the second inequality, hence given ε > 0 we can find R1, R2 > 0 with the
required properties.

Remark 20 The consequence of the peculiar feature of the previous Corollary that the
process ũ may be defined on a new probability space

(
Ω̃, F̃ , P̃

)
is the emergence of the

concept of "weak solution in the probabilistic sense". This means that the probability space
over which we find a solution is not necessarily prescribed a priori. If we are only interested
in statistical properties, this is not bad, but sometimes for special investigation it is very
restrictive.
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4.4 Application to Galerkin approximations: 2D case

4.4.1 Estimates and compactness

Step 1 (preparation). Let us use the definitions introduced in the proof of Theorem 4:
(ei) is a complete orthonormal system in H made of eigenvectors of A, with eigenvalues
(−λi), Hn and πn are consequently defined, and we introduce the bilinear operator Bn :
Hn ×Hn → Hn definend as

Bn (u, v) = πnP (u · ∇v)

(we omit the verification that u, v ∈ Hn imply u · ∇v ∈ H, so that P is well defined on
u · ∇v). Then we consider the finite dimensional equation

dun = Aundt−Bn (un, un) dt+ fn + Fn (un) +
∑
k

σnk (un) dW k
t

where fn = πnf , Fn (u) = πnF (u), σnk (un) = πnσk (un); with initial condition un0 = πnu0.
It is easy to check that

〈Bn (un, un) , un〉 = 0.

Step 2 (estimates in square norms). Therefore, from Itô formula (in finite dimensions)
we get

‖un (t)‖2H + 2ν

∫ t

0
‖∇un (s)‖2H ds = 2

∫ t

0
〈fn (s) + F (un (s)) , un (s)〉 ds

+
∑
k∈K

∫ t

0
‖σnk (un (s))‖2L2 ds+Mn

t

where

Mn
t = 2

∑
k∈K

∫ t

0
〈σnk (un (s)) , un (s)〉 dW k

t .

After having seen above various proofs, it is a simple exercise to deduce (see also Step 3
below)

E
∫ T

0
‖un (s)‖2V ds ≤ C (10)

E

[
sup
t∈[0,T ]

‖un (t)‖2H

]
≤ C.

Then we investigate the Wα,p (0, T ;V ′) norm of un. In a sense, this is the most technical
part but the reader will recognize that the key properties are (10), the rest of the proof are
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technicalities. For s < t

‖un (t)− un (s)‖V ′ ≤
∫ t

s
‖Aun (r)‖V ′ dr +

∫ t

s
‖Bn (un, un) (r)‖V ′ dr

+

∫ t

s
‖fn (r) + Fn (un) (r)‖V ′ dr +

∥∥∥∥∥∑
k

∫ t

s
σnk (un (r)) dW k

r

∥∥∥∥∥
V ′

.

We have

E
∫ t

s
‖Aun (r)‖V ′ dr ≤

√
t− s

(
E
∫ t

s
‖Aun (r)‖2V ′ dr

)1/2

≤ C
√
t− s

by (10), and similarly

E
∫ t

s
‖fn (r) + Fn (un) (r)‖V ′ dr ≤ C

√
t− s.

Moreover,

E

∥∥∥∥∥∑
k

∫ t

s
σnk (un (r)) dW k

r

∥∥∥∥∥
V ′

≤

E
∥∥∥∥∥∑

k

∫ t

s
σnk (un (r)) dW k

r

∥∥∥∥∥
2

V ′

1/2

=

(
E
∑
k

∫ t

s
‖σnk (un (r))‖2V ′ dr

)1/2

≤ C
√
t− s

because we assume σnk bounded. Finally, from the usual inequalities,∫ t

s
‖Bn (un, un) (r)‖V ′ dr ≤ C

∫ t

s
‖un (r)‖H ‖un (r)‖V dr

≤ C sup
r∈[0,T ]

‖un (r)‖H
∫ t

s
‖un (r)‖V dr

hence

E
∫ t

s
‖Bn (un, un) (r)‖V ′ dr ≤ CE

[
sup
r∈[0,T ]

‖un (r)‖2H

]1/2

E

[(∫ t

s
‖un (r)‖V dr

)2
]1/2

≤ C
√
t− s.

Putting together all these pieces,

E ‖un (t)− un (s)‖V ′ ≤ C
√
t− s
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which implies

E
∫ T

0

∫ T

0

‖un (t)− un (s)‖V ′
|t− s|1+α dsdt ≤

∫ T

0

∫ T

0

C

|t− s|
1
2

+α
dsdt =: C <∞

if α ∈
(
0, 1

2

)
. The condition αr > 1− r

p of Theorem 15 is fulfilled for 1− 1
p <

1
2 , namely for

p < 2. This result is not so good for the sequel: when passing to the limit in the nonlinear
term we have ∫ t

0
〈Bn (un (s) , un (s)) , φ〉 ds = −

∫ t

0
b (un (s) , πnφ, un (s)) ds

so, taking φ ∈ D (A) ⊂ Cb (D), it is suffi cient to have strong convergence of un in
L2 (0, T ;H), but not in Lp (0, T ;H) with p < 2. Perhaps there are arguments to overcome
this diffi culty thanks to the uniform in time bound of estimate (10), but it is interesting to
show how to upgrade the integrability of solutions and thus let us develop this in the next
step.

Step 3 (estimates in Lr). Take r > 2. Assume

E [‖u0‖rH ] <∞, E
∫ t

0
‖f (s)‖rV ′ ds <∞.

Consider the function
f (x) = ‖x‖r

for x ∈ Rn. We have, for x 6= 0,

∂if (x) = r ‖x‖r−1 xi
‖x‖ = r ‖x‖r−2 xi

∂j∂if (x) = rxi∂j ‖x‖r−2 + r ‖x‖r−2 δij

= r (r − 2) ‖x‖r−4 xixj + r ‖x‖r−2 δij

and we may include x = 0 for r ≥ 4. Treating rigorously the case r ∈ (2, 4) requires some
more details that we omit. Then from Itô formula we have

d ‖un (t)‖rH = r ‖un (t)‖r−2 〈un (t) , dun (t)〉

+
1

2
r (r − 2)

∑
k∈K
‖un (t)‖r−4 〈un (t) , σnk (un (t))〉2 dt

+
1

2
r ‖un (t)‖r−2

∑
k∈K
‖σnk (un (t))‖2L2 dt
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hence

d ‖un (t)‖rH + rν ‖un (t)‖r−2 ‖∇un (t)‖2L2
≤ r ‖un (t)‖r−2 〈un (t) , fn + Fn (un)〉 dt+Mn,r

t

+
1

2
r (r − 1) ‖un (t)‖r−2

∑
k

‖σnk (un (t))‖2L2 dt

where

Mn,r
t = r

∑
k∈K

∫ t

0
‖un (s)‖r−2 〈σnk (un (s)) , un (s)〉 dW k

t .

From the usual localization argument,

E [‖un (t)‖rH ] + rν

∫ t

0
‖un (s)‖r−2 ‖∇un (s)‖2L2 ds

≤ CrE
∫ t

0
(‖un (s)‖rH + 1) ds+ CrE

∫ t

0
‖un (s)‖r−2

H ‖f (s)‖2V ′ ds

+ν

∫ t

0
‖un (s)‖r−2

H ‖un (s)‖2V ds.

We need, from ab ≤ cr
(
a

r
r−2 + b

r
2

)
( r−2
r + 2

r = 1)

E
∫ t

0
‖un (s)‖r−2

H ‖f (s)‖2V ′ ds ≤ E
∫ t

0
‖un (s)‖rH ds+ E

∫ t

0
‖f (s)‖rV ′ ds

hence the additional assumption on f . From Gronwall lemma,

sup
t∈[0,T ]

E [‖un (t)‖rH ] ≤ C.

Using this preliminary estimate and Burkholder-Davis-Gundy inequality (we omit the de-
tails) we get

E

[
sup
t∈[0,T ]

‖un (t)‖rH

]
≤ C. (11)

Repeating the arguments above, one can check that

E [‖un (t)− un (s)‖rV ′ ] ≤ C (t− s)r/2 .

It follows

E
∫ T

0

∫ T

0

‖un (t)− un (s)‖rV ′
|t− s|1+αr dsdt ≤

∫ T

0

∫ T

0

C

|t− s|
2−r
2

+αr
dsdt =: Cr <∞
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if αr < r
2 . The condition αr > 1 − r

p of Theorem 15 is fulfilled for p = 2 if αr > 1 − r
2 .

Thus if
1− r

2
< αr <

r

2

both conditions are satisfied. For r = 1 this is impossible, as seen in the previous step, but
for every r > 1 there exists α ∈

(
0, 1

2

)
with such property.

The conclusion is;

Theorem 21 There exist (α, r) with αr > 1− r
2 and C > 0 such that

E
[
‖un‖Wα,r(0,T ;V ′)

]
≤ C.

Form the previous results:

Corollary 22 The family of laws of un is tight in L2 (0, T ;H).

4.4.2 Application Gyongy-Krylov criterion and conclusion of the proof of ex-
istence

In the sequel we assume u0 and f deterministic but a simple variant of the argument covers
the random case.

Let un be the Galerkin sequence. Assume we have a subsequence unk and a process u
with the following properties:

1. u has the regularity prescribed by the theorem

2. unk converges to u in probability in L
2 (0, T ;H)

3. unk converges weakly to u in L
2
F (0, T ;V ) and weak star in CF ([0, T ] ;H).

Then with some work we can pass to the limit in the weak formulation of the equations;
property 2 is needed to pass to the limit in the quadratic term. The existence of a sub-
sequence with properties 1-3 comes from (10) (and a variant of the argument of Remark
14 to identify the limit as the same function). From this subsequence, from the bounds of
the previous section and the compactness theorem, we may also extract another one such
that unk converges in law, in the strong topology of L

2 (0, T ;H), to the law of u (again we
identify the limit by a variant of the argument of Remark 14). The convergence in law im-
plies convergence in probability, in the strong topology of L2 (0, T ;H), by Gyongy-Krylov
criterium, which is applicable as shown below in this section.

Hence we have to show that Gyongy-Krylov criterium applies. Take any pair of sub-
sequences (n1 (k) , n2 (k)) and consider the sequence of pairs

(
un1(k), un2(k)

)
. Since (un) is

tight in L2 (0, T ;H), it is very easy to check that also
(
un1(k), un2(k)

)
is tight in L2 (0, T ;H)2.

Let k (h) be a subsequence such that
(
un1(k(h)), un2(k(h))

)
converges in law to some µ. We
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only need to prove that µ (D) = 1. It is suffi cient to prove that, given ε > 0, µ (Dc
ε) = 0,

where
Dc
ε =

{
(u, v) ∈ L2 (0, T ;H)2 ; ‖u− v‖L2(0,T ;H) > ε

}
.

Since this is an open set, where weakly convergent probabilities are lower semicontinuous,
it is suffi cient to prove that

lim
h→∞

P
(∥∥un1(k(h)) − un2(k(h))

∥∥
L2(0,T ;H)

> ε
)

= 0.

To shorten the notations, let us denote the subsequences un1(k(h)), un2(k(h)) simply by
un(h), um(h).

Consider the triple
(
un(h), um(h),W

)
and call Qh its law. It converges weakly to a

measure Q on L2 (0, T ;H)2 × C ([0, T ] ;H). By Skorohod representation theorem there

exists a new probability space
(

Ω̃, F̃ , P̃
)
and random variables

(
ũn(h), ũm(h), W̃h

)
with

laws Qh, and a random variable
(
ũ(1), ũ(2), W̃

)
with law Q, such that

(
ũn(h), ũm(h), W̃h

)
converges P̃-a.s. to

(
ũ(1), ũ(2), W̃

)
in L2 (0, T ;H)2 × C ([0, T ] ;H). With some work that

we do not develop (this is the most diffi cult part of the argument), one can introduce a
filtration F̃t and show that the processes are progressively measurable, W̃h has the form
W̃h (t) :=

∑
k σkW̃

k,h
t where W̃ k,h

t are (for each h) independent Brownian motions and we
have 〈

ũn(h) (t) , φ
〉
−
∫ t

0
b
(
ũn(h) (s) , πn(h)φ, ũn(h) (s)

)
ds

= 〈u0, φ〉+

∫ t

0

〈
ũn(h) (s) , Aφ

〉
ds

+

∫ t

0

〈
fn (s) + Fn

(
ũn(h) (s)

)
, Aφ

〉
ds

+
∑
k∈K

∫ t

0

〈
σnk
(
ũn(h) (s)

)
, φ
〉
dW̃ k,h

s

and similarly for ũm(h). From the strong convergence and minor work we deduce

〈
ũ(i) (t) , φ

〉
−
∫ t

0
b
(
ũ(i) (s) , φ, ũ(i) (s)

)
ds

= 〈u0, φ〉+

∫ t

0

〈
ũ(i) (s) , Aφ

〉
ds

+

∫ t

0

〈
f (s) + F

(
ũ(i) (s)

)
, Aφ

〉
ds

+
∑
k∈K

∫ t

0

〈
σk

(
ũ(i) (s)

)
, φ
〉
dW̃ k

s
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for i = 1, 2, where W̃ k
t are independent Brownian motions. From this we already know

that we deduce ũ(1) = ũ(2) and this means that the projection of Q on L2 (0, T ;H)2 is
concentrated on the diagonal.

4.5 3D Navier-Stokes equations with additive noise

Let us add a few remarks on the 3D Navier-Stokes equations in a domain D, just with
additive noise, which we shortly write in abstract form

du = Audt+B (u, u) dt+ f + F (u) +
∑
k

σkdW
k
t . (12)

Writing the theory of 3D Navier-Stokes equations in the same detail as above is not coherent
with the format of these lectures. Therefore we shall limit ourselves to an outline of ideas.
The definition of weak solution is similar to the 2D case. However, two new elements are
present. The first one is that we just require weak continuity in H, namely continuity in
the weak topology of H:

u ∈ C ([0, T ] ;Hw) ∩ L∞ (0, T ;H) ∩ L2 (0, T ;V ) . (13)

For every test function φ ∈ H, the function t 7→ 〈u (t) , φ〉 is continuous. Since we assume
u ∈ L∞ (0, T ;H), a property like

u ∈ C
(
[0, T ] ;D (A)′

)
implies u ∈ C ([0, T ] ;Hw).

The second detail is that now we cannot prove the energy identity; and if u is a weak
solution (in the sense of weak regularity plus the weak formulation of the equation), we
cannot even prove an energy inequality. We have to include it in the definition, if we
want to use it; and the existence of weak solutions satisfying the energy inequality can
be established. Sometimes the weak solutions which have an energy inequality are called
Leray solutions.

The other aspect which drastically changes are the interpolation inequalities. The
property (b, B, P etc. are refined as in the 2D case)

b (u, v, w) ≤ ‖v‖V ‖u‖L4 ‖w‖L4

is always true, being given by Hölder inequality. But then, recall Sobolev embedding
theorem in dimension d: Wα,p (D) ⊂ Lq (D) if 1

q = 1
p −

α
d . We thus have:

‖f‖L4
d=2
≤ ‖f‖

W
1
2 ,2
≤ ‖f‖1/2

L2
‖f‖1/2

W 1,2

‖f‖L4
d=3
≤ ‖f‖

W
3
4 ,2
≤ ‖f‖1/4

L2
‖f‖3/4

W 1,2 .
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This increase of the power of ‖f‖W 1,2 has tremendous consequences. In particular, from
the regularity

u ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V )

we cannot deduce anymore u ∈ L4
(
0, T ;L4

)
, property that we have used in essential way

in d = 2. Now we only have u ∈ L8/3
(
0, T ;L4

)
:∫ T

0
‖u (t)‖8/3L4 dt ≤ C

∫ T

0
‖u (t)‖2/3H ‖u (t)‖2V dt ≤ C sup

t∈[0,T ]
‖u (t)‖2/3H

∫ T

0
‖u (t)‖2V dt.

4.5.1 The problem of uniqueness

Let us illustrate the problem in the particular case F = 0, σk = 0. If u(i) are two solutions
and we set w = u(1) − u(2), we have

〈w (t) , φ〉 −
∫ t

0

(
b
(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

))
(s) ds =

∫ t

0
〈w (s) , Aφ〉 ds

and since

b
(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

)
− b (w, φ,w)

= b
(
u(2), φ, w

)
+ b

(
w, φ, u(2)

)
we get

〈w (t) , φ〉 −
∫ t

0
(b (w (s) , φ, w (s))) ds

=

∫ t

0
〈w (s) , Aφ〉 ds−

∫ t

0

(
b
(
u(2), φ, w

)
+ b

(
w, φ, u(2)

))
(s) ds.

Up to details (in particular the next fact requires Leray solutions), we have

‖w (t)‖2H + 2ν

∫ t

0
‖∇w (s)‖2H ds ≤ −2

∫ t

0

(
b
(
u(2), w, w

)
+ b

(
w,w, u(2)

))
(s) ds

= −2

∫ t

0
b
(
w,w, u(2)

)
(s) ds.

But now ∣∣∣b(w,w, u(2)
)∣∣∣ ≤ C ‖w‖V ‖w‖L4

∥∥∥u(2)
∥∥∥
L4

≤ C ‖w‖7/4V ‖w‖
1/4
H

∥∥∥u(2)
∥∥∥
L4
.
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We may use Young’s inequality ab ≤ νa8/7 + Cνb
8:∣∣∣b(w,w, u(2)

)∣∣∣ ≤ ν ‖w‖2V + Cν ‖w‖2H
∥∥∥u(2)

∥∥∥8

L4

so that

‖w (t)‖2H + ν

∫ t

0
‖∇w (s)‖2H ds ≤ Cν

∫ t

0
‖w (s)‖2H

(∥∥∥u(2) (s)
∥∥∥8

L4
+ 1

)
ds.

Gronwall this time does not apply because we do not know that u(2) is of class u ∈
L8
(
0, T ;L4

)
; we only know u ∈ L8/3

(
0, T ;L4

)
.

4.5.2 Estimates on Galerkin and tightness

The definition of Galerkin approximations is the same as in 2D and the first energy in-
equalities are proved in the same way. We get the same bounds (10)-(11). With due work
we deduce that laws of un are tight in L2 (0, T ;H). A little additional work gives tightness
in

L2 (0, T ;H) ∩ C
(
[0, T ] ;D (A)′

)
.

Moreover, we have weak convergence in the topologies of (10), hence any limit measure
of subsequences is supported on the regularity space of the definition of weak solution. It
remains to prove that such limit measures (which exist) correspond to solutions of the 3d
Navier-Stokes equations.

4.5.3 Definition of solution and convergence

Until now a solution has been a stochastic process. However, the previous construction
provides only a probability measure on certain function spaces. One can always introduce
a stochastic process with such measure as law, but it is just an artefact, it is not defined
on the original probability space where the problem was formulated. Therefore we give
the following definition, which is called weak in a double sense: weak probabilistically and
weak analytically.

Definition 23 Let u0 ∈ H be given. A weak solution of the 3D Navier-Stokes equations
(12) with initial condition u0 is a filtered probability space (Ω,F ,Ft,P), a family of in-
dependent Brownian motions W k

t , k ∈ K, over such space, and a stochastic process u,
with paths of class (13), progressively measurable (adapted in H, being weakly continuous),
which satisfies

〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉+

∫ t

0
〈u (s) , Aφ〉 ds+

∑
k∈K

√
λk 〈σk, φ〉W k

t
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for every φ ∈ D (A). We also require

E
[
‖u (t)‖2L2

]
+ 2ν

∫ t

0
E ‖∇u (s)‖2L2 ds = ‖u0‖2L2 + t

∑
k∈K

λk ‖σk‖2L2 .

Notice that assuming u0 random provokes a problem: that a probability space should
be defined in advance; this is not compatible with the construction. An alternative then is
to prescribe the law of u0 on H.

Let us sketch the proof of existence of such solutions. Let un be the Galerkin approxi-
mations defined above. In fact consider for each n the pair

(un,Wn)

where Wn (t) :=
∑

k σ
n
kW

k
t , which is a random variable with values in

L2 (0, T ;H)× C ([0, T ] ;H) . (14)

Call Qn its law. The family (Qn)n∈N is tight in this space (the tightness of the second
component follows from its convergence to W (t) :=

∑
k σkW

k
t ). Let us extract a subse-

quence (Qnk) which weakly converges to a probability measure Q. Then, for every smooth
compact support divergence free test vector field φ (t, x), consider the functional

Jφ (u,w) : = 1 ∧∣∣∣∣∫ T

0
〈u, (∂s +A)φ〉 ds+

∫ T

0
b (u, φ, u) ds+

∫ T

0
〈f + F (u) , φ〉 −

∫ T

0
〈w, ∂sφ〉 ds

∣∣∣∣ .
Notice that, if a sequence of functions (un) ⊂ L2 (0, T ;H) converges strongly to u, and φ
is bounded, then b (un, φ, un) converges to b (u, φ, u). Thus the functional Jφ is continuous
on the product space (14), and bounded. Hence

lim
k→∞

∫
Jφ (u,w)Qnk (du, dw) =

∫
Jφ (u,w)Q (du, dw) .

But ∫
J (u,w)Qnk (du, dw)

= E
[
1 ∧

∣∣∣∣∫ T

0
〈unk , (∂s +A)φ〉 ds+

∫ T

0
b (unk , φ, unk) ds

+

∫ T

0
〈f + F (unk) , φ〉 −

∫ T

0
〈Wnk , ∂sφ〉 ds

∣∣∣∣] .
The equation satisfied by unk may be rewritten for time-dependent test functions φ as we
did in Chapter one when dealing with the Stokes problem:∫ T

0
〈unk , (∂s +A)φ〉 ds+

∫ T

0
b (unk , πnkφ, unk) ds+

∫ T

0
〈f + F (unk) , πnkφ〉−

∫ T

0
〈Wnk , ∂sφ〉 ds.
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Hence ∫
J (u,w)Qnk (du, dw)

= E
[
1 ∧

∣∣∣∣∫ T

0
b (unk , φ− πnkφ, unk) ds+

∫ T

0
〈f + F (unk) , φ− πnkφ〉

∣∣∣∣] .
Let us prove it goes to zero:

E
∣∣∣∣∫ T

0
b (unk , φ− πnkφ, unk) ds

∣∣∣∣ ≤ ‖φ− πnkφ‖V E
∫ T

0
‖unk‖H ‖unk‖V ds

≤ ‖φ− πnkφ‖V E
[

sup
t∈[0,T ]

‖unk (t)‖H
∫ T

0
‖unk‖V ds

]
and ‖φ− πnkφ‖V → 0 (using φ ∈ V and the commutativity of πnk with A),

E

[
sup
t∈[0,T ]

‖unk (t)‖H
∫ T

0
‖unk‖V ds

]
≤ C

by the bounds (10); and

E
∣∣∣∣∫ T

0
〈f + F (unk) , φ− πnkφ〉

∣∣∣∣
≤ ‖φ− πnkφ‖V

(
E
∫ T

0
‖f‖V ′ ds+ CE

∫ T

0

(
1 + ‖unk‖H

)
ds

)
and the argument is similar and easier.

It follows that Q satisfies ∫
Jφ (u,w)Q (du, dw) = 0

for every φ. Realize Q as law of
(
ũ, W̃

)
. The second marginal of Q is the law of W :=∑

k σkdW
k
t , being the weak limit of the second marginal of Qnk , which is the law of Wn

which converges a.s. to W ; hence W̃ has the same law of W . Working a little bit with
Gaussianity, we may check that W̃ is represented as

∑
k σkdW̃

k
t where W̃

k
t are independent

Brownian motions.
We have

Ẽ
[
1 ∧

∣∣∣∣∫ T

0
〈ũ, (∂s +A)φ〉 ds+

∫ T

0
b (ũ, φ, ũ) ds

+

∫ T

0
〈f + F (ũ) , φ〉 −

∫ T

0

〈
W̃ , ∂sφ

〉
ds

∣∣∣∣] = 0
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hence P̃-a.s.∫ T

0
〈ũ, (∂s +A)φ〉 ds+

∫ T

0
b (ũ, φ, ũ) ds+

∫ T

0
〈f + F (ũ) , φ〉 −

∫ T

0

〈
W̃ , ∂sφ

〉
ds = 0

for every given φ (the negligible set where this may not hold depends on φ). Taking first
a dense countable set of φ’s, so that we can inverte the quantifiers and then a convergence
argument based on pathwise regularity, we deduce that, P̃-a.s., we have∫ T

0
〈ũ, (∂s +A)φ〉 ds+

∫ T

0
b (ũ, φ, ũ) ds+

∫ T

0
〈f + F (ũ) , φ〉 −

∫ T

0

〈
W̃ , ∂sφ

〉
ds = 0

for all φ, which is the definition of weak solution.

5 Summary

The main open problem outlined in this Chapter is the continuation of the one posed in
the previous chapter, namely the link between a real irregular boundary and stochastic
models of fluids; here the problem is enriched of the dependence on the flow intensity, a
very realistic feature, which poses a new technical issue, namely the presence of the Wong-
Zakai corrector in the limit equation. We have also seen that noise introduces energy, in
the average, hence the model should be corrected by an energy loss.

The main techniques illustrated in this Chapter are the use of Itô formula, an interest-
ing idea for uniqueness, its consequence through a criterion of Gyongy and Kryolov, and
expecially the method of compactness, quite universal and useful in many fields.
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