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Two phase system

In this talk, we consider the two phase flow. The upper flow satisfies the compressible Euler
equation and the lower flow satisfies the incompressible Euler equation. This system is as
following

BpT +divez(uTpt) =0, (t,X)eRT xQf,

pr Bt +ut Ve uT) + Vi PT =0, (t.X)eRTxQ/,

QU™+ U™V Um + Ve ,PT =0, (t,X)eR"xQ;, (1)
divk,u” =0, (t,X)eRT xQ;,

(", u)l=0 = (o5 - Ug)-

where Pt = (p7)2 = A with A > 0 and X = (x,z) = (x4, X2, Z). Moreover, in this paper, we
assume that the initial density of fluid is away from vacuum which means that there exists a
constant ¢ such that p3” > co > 0.
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Two phase system

Boundary condition:

Ot + u* - Vy, aretangentto Iy,
utn=u-n, @)

Pt - P~ =o«,

where « is the mean curvature of the free surface I';, and n is the normal vector of I';.
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Known results

One Phase flow: Incompressible Euler

Results on Local well-posedness

@ Without surface tension: Wu, Christodoulou-Lindblad, Zhang-Zhang, Shatah-Zeng,
Coutand-Shkoller, Lannes and etc

@ With surface tension: Shatah-Zeng, Ming-Zhang and etc

Results on gobal well-posedness
@ Wu, Germain-Masmoudi-Shatah, lonescu-Pausader, Alazard-Delort, Wang, Deng.......
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Known results

One Phase flow: Compressible Euler

Results on Local well-posedness
@ Away from vacuum: Majda, Coulombel, Secchi, Lindblad, Trakhinin, Chen, Luo.....
@ Physical vacuum: Lindblad, Coutand, Shkoller, Jang, Masmoudi, Luo, Yang, Xin.....

Results on Gobal well-posedness
@ Luo-Xin-Zeng, Guo-Hadzic-Jang....
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Known results

Incompressible case: divu = 0, all we need the estimates of the tangential derivative.

compressible caes: use the D; and tangential derivative to recover the normal deriva-
tive

Instability:
Two phase flow for incompressible case: instability without surface tension.

Two phase flow for compressible case: stability when the Mach number M > V2 for
2-D case
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Key Lemmas

Energy Estimates
Main results &

Main results

Now, we give the definition of energy function E(t) and low-order energy function E(t) :

3
E(T) = sup Z||a3' iyar) + 2, 107 P g +Z||a,n||H4,R2)
i=0 i=1

Now, we are in the position to state the main result:

Let u* and P* be the smooth solutions to (1). For any time T, the following estimates hold

E(T) < P(E(o))+fOTP E(T

where P(-) is a polynomial function.

a0 WANG On the motion of interfaces of compressible and incompressible fluid:



Key Lemmas
Energy Estimates

Main results

Estimates of P~

First, we give the estimates of P~

Let u* and P* be the smooth solutions to (1). Then, we have

167V 2P NIy < P(E(T))-
0

2
i=

Proof: By the equation (1)3, we have
Vx,zP7 = _(6t +u 'Vx,z)Ui,
which implies that

107V x2P iy < 1677V 2(8t + U™ - Vi )u Il 20y < P(E(1)).
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Key Lemmas
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Main results

Improved regularity of free surface

Now, we improve the regularity of free surface because of the surface tension:

Let u* and P* be the smooth solutions to (1). Then, we have

2
10 tllps-i(szy < P(E(E))-
i=0

Proof: By the boundary condition of pressure, we have that

Vxn

o N |Vxn|2)

Then, by the classical elliptic estimates, we have

=Pt - P e H*3(Iy) 3)

”VXT]”HS.S(RZ) < P(E(f)).
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Key Lemmas

. Energy Estimates
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Improved regularity of velocity

Next, we improve the regularity of velocity which is motivated by water wave equations. First,
recalling the equation of the n, we obtain that, for i = 1,2,

D; 85 = Ui, ()
where Uj := 05,B = V11 - 9y, V, (V. B) = (Up, Uz )lz=y = U |z—.
By directly calculation, we have that

Ui = [0va + 0xnd2v3 — (0 V7 + dxn0:v7 )|
= [G(Tl) Vi+0xnG()B + Rtl;:‘]lz:r]’
2 Ui+ Ry~

z=n

where G(n)f 2 /1 + [Vx529nfy with fz is the harmonic extension of the function f and RL,
is defined by the vorticity w™,
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Improved regularity of velocity

Introduce another new good unknown

Uiz Vi+Ty,,B (i=1,2), ®)
and thus get
U = G(T])Ui + TG(r])Bain (i = 1’2)- (6)
Thus, we have
GU;i = Dydxn-Ri- = Tausdxi

Let u* and P* be the smooth solutions to (1). Then, we have

I(DF )2 Uil 2 ey + ID; Ulllrs ey < P(E())
(D7 )2 Uillyt (m2y + 1105 Uillpes gz < P(E(t)).
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Key Lemmas
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Main results

Improved regularity of velocity

Let u* and P* be the smooth solutions to (1). Then, we have

(D7 2(V. B)llyt g2y + ID; (V. B)llpes g2y < P(E(t)).

Based on the above lemma, we can improve the regularity of P~

Let u* and P* be the smooth solutions to (1). Then, we have

w2 p—
[ID; V=P “H%(Q’) < P(E(t)).
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Interior estimates

@ Denote T; = (9)%'D] where & = t- V. with 7 is the tangential vector of the free
surface.

@ Acting T; on the both sides of the (1), to get that
D TiPt +2(Tidivk.ut) (P +A) =R/,
where
R = [D{", TIP* 4 2[P* + A, Tildivy ;u™.
@ Acting T; on the both sides of the (1), to get that
p*D;’(Tilﬁ) + Vx TiPT = Fr’;,
where

R} = [Viz, TIPT + [o7 D}, Ti]u™.
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Interior estimates

@ By the energy method, we get

( Liidia +|T,u+|2 +f TiP*(Tiu* - n)
+ a(Pt +A)
sP( ())+||R+||L2(Q+ IR gy + M0V, T I

@ By the same argument, we give energy estimates for the u™:

- 12— . P~ T
24t Jo; Tl fr, TP~ (T )
-2 . —112
< P(E(t)) + ||R3 ”LZ(Q;) + |[divy 2, Ti]u ”LZ(QF)

where

Ry = [D;, Tiju™ + [Vx.z, Ti|P".
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Boundary estimates

@ The key point of paper is to give the estimates of the following boundary term
[ (e et my -1 P (e o)
t
According to the boundary condition, we have that

[ (et -t m =1 () ®

f(TiP+—T;P’)~T;(u+~n)+f T,~P’~[T,',n]-u’—f TPt - [Tin]-u"
Tt Tt It

om _ _
- T;K‘Ti(iwf TP [Tin] - —f TP - [Ton] - ut,
‘fr‘t 1+ |0xn? It Tt

@ According to the definition of T; where i=0, 1, 2, 3, 4, we split the proof into the following
four steps.
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Boundary estimates

e Ty =233
Bk 3 _Om 3(5, 9xn 3 4yl
L@ M¢meﬁ Lm@(W+WW»aAW+WW)
oxn
> N63(0x (=)l 4 15 ——==5)Il_;
> W M
< P(E(t).

o Ty = 32(0¢ + V1) .

om [
[ e T <0+ Vol g 1T (=
R

V1 -+ loxnP JTTnIz)”H% < P(E(t))
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Boundary estimates

o To = 0x(0: + V+3x)2.

om o 2 om
Tox- To(—21 ) — frzk.aa(i)
fR NeErw: 0 O A

i)
-‘rf Tk - 3x(at V+5x +2Vi + (V+6X)(V+8X))( £
R

——)
V1+ |ax77|2

1
<

. 3 —
< j];TzK x07n( m)—f—P(E(t)),

where

[Teraidtn————) < - [ Dhcan(mitn———))+ PEW)

v1+ |3><7]|2 V1+ |6x7]|2

! —3) + PE().

< - | D?%n PP n(— M —
jl; t Ox1 * Ox tn((1+|¢9x
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Recalling the definition of D2 = 8,(9? + 8; VT x + 2V+62, + (VF8x) (VT dy)), we have

]
D282y - 820 (————
ji; t Ox1 - Ox tn(1+|ax7]|2)
1 2v+
< - | 8%6%n-828° .7—2faa3 R0 ———
L tOx1 - Ox0t1] 1+|6X77|2 2 tOx1] - OxO¢1] 1+|ax7]|2
V+)2
— | 8y 8263 -(7+PE1‘
[ ot dEatn- S + i)
4
- 2V

1 1
< —=8 | 18262 2-7—&9[663 S020%n s ———
> IL| t el 1+|3x71|2 t L tOx1] - Ox0¢ 1] 1+|3x77|2

afa“ 80? ﬁ-‘,—P(E(l‘))
t 2 x1 - OxO¢T] 1+|6x7]|2 .

Combining all the above estimates, we get that

] 1 92l 2v+t
fRTQK.TZ(%") < —761Lw—20,f@ain-a§a$n~

V1+ |(9X;7|2 2 1+ |6x77|2 14+ |ax77|2

o [ atn- it 1(+V|6) 5+ PEC))
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Boundary estimates

e T3 = Df. This part is the most difficulty part. Because there too many time derivative in
the case, we can not use the Lemma 3. First, by direct calculation, we get

Didn = dx(ut - n- \[1+10:1P) - V- 92n

which implies that

Di( O - ax(ut - n- 1+ 8.n2) V-2
) - _
V1 + 10xmR (1 + 19xnl?)%/2 (1 + 19xnl2)3/2

Thus, we get that

Ot -n- T+10P) | o V- 02D 9xn
oDl
(1 + 10x72)372 “(1+10xmP)372 T+ 105172

DtK = 6X

which implies that

Ox(ut - n- N1+ 10xnl?)

(1 +18xm2)3/2

V- %n
(1 + 10xm[2)3/2

Oxn

V1 + 18

D3k = D20, + D29y — D?[dy, Dy
t t t t
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By now, we obtain that

5, _ 8262(u- n)
! 1+ |0xnf?

where the leading-order term in Ry are 629%n.
Next, we have

823t -n
fD?K-D?(u+-n) fy~Df(u+~n)+fR1-D,3(u+-n)
R R R

1+ 18xn1
820x(ut - n)
1+ 18712

v

Sl 12, - PE®) + [ A Dt ).

All we left is to give the estimates of the last term of the above equality. We split the proof
into the following two case.

fRafain. D¥(ut -n)-f

with some smooth function f.
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The worst term in the first integral is that

fa?ain-a?(u+-n)-f fazain -t + fazain B
R

It + bo.

where f; and f, are smooth functions. For 1, we have

L = _La$a§n~axafn~f1 —fafaiq-a;‘r;.axﬁ
= —(')ff(?z(')zr] - f +fa3 20 0x0%n - fy +f8202n 3x0%1 - Bty
—atfRa?ain-a?n-axﬁ +fR6?6§n-8?n-6xﬁ +La§a§n-0?n-axatf1

> —a,fma?ainaxa?n-ﬂ —a,fRafaina?q-axﬁ - P(E(1)
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which implies that

t
f lidt > —P(E(0)) - tP(E(t)) — Ei(t) — E(1).
o
For I, by the same argument as I, we get that

f’ Lt > —P(E(0)) - tP(E(1)) - E(t) - £E(1).

0
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Next, we give the estimates of the commutator. The main part of
f TP~ [Ti,n]-u~ —f TiPT - [Ti,n]-ut
Tt Tt

is that

jr‘Df’m(D?P’u’—DfP*u*) frDfK.Dfn.u*JFfr[u].Dfn.D?P*
t t t

= G+ Co.

For C», we notice that [u] - n = 0, we get

Ce = f [u-7]r-D3n- D3P,
Tt
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Boundary estimates

Here, we notice that
Dyt = (V-u™ - n)n,
we get that

7-D¥n~n-D¥r = DE(V.u -n)~DE(V.u)-n.
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Thus, we get that

C: < P(E(t))—i—f div([u-7]D2V.u™ - DP7)

o

< P(E(t))-}—f [u-T]D2V,u - VDSP~
o

< P(E(t))+L;[U~T]D,2VTU‘~D;‘U‘

< P(E(t))+a,f [u-7]D2V,u - D3u™
o

+th_[u~T]DfVTu’-Dfu’

< P(E(t))+a,f [u-7]D2V u™ - DRu~

o
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Thanks!
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