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Kato method

According to a work due to T. Kato, Math. Z. 187 (1984), 471-480, to solve the
Navier-Stokes equations:

ou—u-Va-Div(uDu)-pD) =0, divu=0 inQ x(0,00),
ulr =0, wul= =1u in Q,

where Q is a domain in RN (N > 2) and T its boundary, if we know the existence of
Stokes semigroup {T'(1)}:=0, Which is analytic, and the L,-L, decay estimate:

_N(1_1

TN, < Cpgt 26 DI, 1<p<q<oo;
_1_N(1_1

INT@fll, < Crgt 2 2 6-fL, 1<p<g <N,

for any t > 1, then, we can prove the global well-posedness for small initial data
uy € Ly(Q).
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An idea of Kato’s proof

Apply Stokes semigroup to reduce the problem to the following integral equations:

u= f T(t — )P(u - Vu)(-, 5) ds,
0

P being the Helmholtz projection, we can show the global well-posedness by
using a standard iteration scheme in the underlying space 7. with

Te = fu e €0, 00), HY(®Q) N L) | lim [lu 1) = wolly @) = 0,

12 -4
sup [[uC, Dllzy@ + sup #2IVuC, Dlly) + sup 2277 [uC, )l @) < €

O<t<oco 0<t<oo0 0<t<co

with some exponent p with N < p < co and small positive number €.
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Quasilinear problem in unbounded domains

We consider
Ju—Au=F@) inQx(0,00), Bulr=G(@U), ul-=u.

Here, Bu|r = G(u) is a boundary condition, F(u) and G(u) are nonlinear functions
of u and its derivatives, like F(u) = f(Vu)(d,u, V>u), G(u) = g(Vu)Vu, quasi-linear
type. | want to treat this problem in the same spirit as Kato’s one.

(1) maximal L,-L, regularity for the time shifted linear problem:

Ju+dgu—Au=f inQx(0,0), Bur=g ul- =up.
with some large constant 4y > 0. In the Stokes operator case, we have

b b
I <t >" dnullr, 0.0, + I < 1> 0l (00012000
b b
< Cllullgz-in gy + 1< 1> flley ooty + 1< 1> Bl ooy1,0
b
+1 < 1> gl (0o

Note that the Stokes operator means that an operator obtained by eliminating the
pressure term.
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(2) (A, B) generates an continuous analytic semigroup {T(t)},»o. In the Stokes
operator case, the domain is {u € Hg(Q) | diva =0, Bu|r =0}. And, {T(t)}:>0
satisfies the L,-L, decay properties:

1

_N(L_1
IT@f L, < Cpgt” ¥G=DNifl,
0V, V2, 8)T(Of I, < Cpgt” ™ 3203 111,

foranyt>1land1<p<g< oo,
In the Navier-Stoke equation case, we can solve the quasi-linear problem by using
a standard iteration scheme in the underlying space 7. with

1 2 2 .
Je = {u e Hy((0,00), Ly 0 Ly,) N Ly((0,00), Hy, N Hy) | lim [juC, 1) = wolle,, e, =0,
_ b b
E) = || < 1> ulle oLy nLyy + 11 < 1>7 VUl o com )

b b
+ll<t> u”Lp((o,oo),ng) +l<t> atll||L1,((0,c>o),qunqu)}-
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For example, we can choose p, g1, g2, and b as

1 1 1 2N N
=—+—, g>max(N,——=), b>0, (I1+—-bp>1,
q2 N 2q>

@1 N -2
bp'>1, 2/p+1/gp#1, N=>3.
First, for v € J., we consider the time shifted equation
du' + u' —Au' =F(v) inQx(0,0), Bulr=G(v), u'l=u,.

By the maximal L,-L, regularity,

a b 2
') = E (Il < t>" o'l oopry + 11 < > Ul (0.c0.2)) < Clllwol| + EV)).
9=491/2,q1.92

Next, we consider the first compensation equations:
du® + pu’ —Au’® = Jpu' N Qx(0,0), Bulr=0, v’ =0.
Then, by the maximal L,-L, regularity,

EW?) < C&mY) < C(lugll + EV)?).
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Finally, we consider the second compensation equations:
o’ — A’ = 10’ INQx(0,0), Bu’r=0, vl =0.

The role of the first compensation equations is to have u? is in the domain of
operators (A, B), namely in particular, Bu?|r = 0 for all ¢ > 0.

Then, by using the L,-L, decay estimate for z > 1 and the standard analytic
semigroup estimate:

10 T(Muollz, + ITOollz2 < Cliwollz2
for 0 <t < 1, we have
EW’) < CEW?) < C(llugll + EW)?).
Setu = u! + u? + v, then u satisfies the linearized equations:
Ju—Au =F() inQx(0,0), Bur=G(v), ul-=ug,

and the estimate:
E) < C(llugll + EW)?).

This implies the global wellposedness for small initial data.
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Formulation of 2 phase problems

Let Q' be a time dependent, bounded domain in RN (N > 2), and Q; = RV \ Q.
Let I', be the boundary of Q; and n, the unit normal to I'; oriented from Q; into Q; .
We assume that immissible fluids ¥* occupy QF and the conservation of mass
and the conservation of momentum are described by the Navier-Stokes equations.
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ap* +div(p*v) =0  inQF,
05(0,vE + v - VvE) — Div (S*(v)) — P I) = 0 in Q*.

for time ¢ > 0. Here, p* denotes the mass density of 7+, v* = (vi,...,vy)" the
velocity field of ¥*, and P* the pressure field of ¥*. And

SE(v*) = *D(v) + vidivvi, D(v®) = Vv* + (Vv*)",

u*, v* are viscosity constants such that u* > 0 and u* + v* > 0.

(1) If ¥*is an incompressible, viscous fluid, we assume that p* = p*, which is a
given, positive constant describing the mass density of the reference fluid.
And so, divv* = 0 and P* is unknown.

(2) If ¥*is a comressible, viscous fluid, we assume that p* = pf + 5*, and

* = p*(p*) is a C™ function of p* defined on (0, o) and assumed that
%) (p*) > 0 for any p* € (0, o).
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Interface conditions

[vI=0, [(S(V)-PDn;] = (cH{T}) - Po)n,,
Vr,=n,-v"
onT, fort > 0. Here,

[F1(x0) = lim f*(x) — lim f~(x) forxo € I,

-
xeQy xeQy

which denotes the jump of functions along T,.
Vr, denotes the evolution speed of T, in the n, direction and Vi, = n, - v© means
the non-slip condition of I',.
o is a non-negative constant.
@ When o > 0, the o describes the coefficient of surface tension.
@ When o = 0, we do not consider surface tension on I;.
Initial conditions

(pi’vi)|t=0 = (f);L + eérvv(i)r)i Qtill=0 = Qi'

If we consider the incompressible, viscous fluid case, 6, = 0. Q* is a reference
domain, which is a uniformly smooth domain whose boundary I' is a smooth
compact hypersurface.
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Local well-posedness

The local wellposedness follows from the maximal L,-L, regularity for the
incompressible-incompressible, incompressible-compressible, and
compressible-compressible case. In fact,

@ Incompressible-incompressible case: Maryani and Saito Diff. Int. Egns., 3,
1-52, 2017 (Linear theory)

@ Local well-posedness: Shibata and Saito, Chapter 3 in Fluids Under
Pressure eds. T. Bodnar, G. P. Galdi, and S. Necasova, Birkhauser, 2020.

@ Incompressible-Compressible: Linear theory by T. Kubo, Y. Shibata and K.
Soga, Boundary Value Problem, 2014, 141,

@ Local well-posedness: T. Kubo and Y. Shibata, Mathematics 2021 9, 621.
https:// doi.org/103390/matb9060621

@ Compressible-compressible, linear thoery and local well-posedness by T.
Kubo, Y. Shibata and K. Soga, Discrete Contin. Dyn. Syst. 36 (2016),
3741-3774.

When two phase flows lie in a bounded container, linear thoery, local
well-posedness and global well-posedness have been studied by Denisova and
Solonnikov and J. Pruess and G. Simonnette.
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Global well-posedness o = 0,

Incompressible-Incompressible case

In the case where o = 0, the Lagrange coordinate is used in the standard manner.
But, some difficulty to treat divergence condition, | use local Lagrange
transformation. Let ¢ € Cg"(RN) which equals 1 on Bz and 0 outside of Byg, where
R is a large number such that Q° c Bg/,. Lety = (y1,...,yn)" € Q be Lagrange
coordinates and u*(y, t) the velocity fields in the Lagrange coordinates. We
consider Lagrange transformation:

!
x=X§(y,t)=y+f eO)u(y, s) ds. (1)
0
Assume that it holds ,
f IV, D))l dt < 6
0

with small positive constant § as far as solutions u* exist for 7 € (0, T). Under this
condition and suitable regularity assumptions on u*, the map x = X;(y, 1) is
diffeomorphisms from Q* onto QF = {x = X3 (y,1) | y € Q*}.
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Equations in Lagrange coordinates

Let u*(y, 1) together with Q*(y, 1) = P*((XZ)~!(y, 1), 1) satisfy the equations:

oo™ — Div(S*(u*) — 0*I) = G*(u™) inQx(0,7),
divu* = g*(u*) = div g(u®) in Qx(0,7),
[u] =0, [(S(w) - QDn] = [H(w)] onT,

ut|—o = Vg in Q.

(@)

Here, F*=, G*, H are nonlinear functions consist of products of some functions of
K* = fo’ V(pu*)ds, and V2u*, Vk* and so on. Like
!
G*(u?) = Vi (K*)(dut, V2u?) + W(k*) f V2(u®)) ds Vu®,
0
g(u®) = Vo(kH)Vu*, g(u®) = Vo(kHu*, H@u*) = V4k*)Vu*.

Here, V;(0) = 0.
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In fact, Jacobi matrix of the transform x = Xz (y, £) is dx/dy = 1 + fot V(pu*)ds, and
&)

) . I+ Vo(kH)n
Vx - (I + VO(k ))Vy’ n, = |(I n Vo(k+)T)n|

with some matrices V of analytic functions of k with |k| < 6. Here, notice that
vt = v~ onT; as follows from [v] = 0 on I’;.
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Global well-posdedness

Assume that N > 3. Choose p, q1, g2, b as follows:

N-2
bp'>1, 2/p+1l/ga#1, 0<o<1/2.

2N N
1/gi =1/N+1/q2, g2 >max(N, —=), b>0, (1+ 2 bp > 1,
q2

Then, there exists an e > 0 such that for initial data v{ satisfying the following
conditions:

+ 2(1-1/p) o 2(1-1/p) s~ 2(1=1/p) s~
VO EBql/Z,P (Q )mqu’ (Q )mqu,p (Q ),

[vo] =0, [(S(vom);]=0 onI, (d; =d-<d,n>n)
problem 3 (equations the Lagrange description) admits unique solutions u* with
u* € L,((0,00), Hy N H, (Q*) N H,((0,0), Ly, N Ly, (%))

with E(u*) < Ce, where C is a constant independent of € > 0.

Y.Shibata (Waseda University) Global wellposedness in unbounded domains Dec.30. 2021



b
EWT) = || < 1> ¥l (0,000, ALy, @)

Y.Shibata (Waseda University)

b + 2.+

+ ” <t> (Vu""v u+)||Lp((0,00),qu Q%))
b .+

< 1>7 Wl 0,00, 12, @2))

b +
+ < 1> 07|, (0,00, Ny, (@%)-
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A sketch of proof

Given v*, we consider the following linearized equations:

piou* — Div (S*(u¥) — 0FI) = G*(v¥)
divu® = g(v*) = divg(v?)

[u] =0,

[(S(w) — ODn] = [H(v)]

Wm0 = Vg

First, we consider time shifted equations:

p(@u; + Aput) - Div (S*(u}) - 07D = G*(v*)

[u] =0,

divuy = g(v*) = divg(v®)
[(S(u;) — Q1Dn] = [H(v*)]

(7, u)li=0 = (65, vg)

inQx(0,7),
inQx(0,7),
onT,
in Q*.

inQx(0,7),
inQx(0,7),
onT,
in QF.
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Time shifted equations

By the maximal L,-L, regularity results due to Mariani and Saito

Il <t >b uf”LP((o,oo),H;]/Zanl NH, (Q%) +l<t >b atuT||L,,((O,oo),qu/szq1 NLg, Q)
< Cflivg ||Bj<]‘/;‘/"035‘]{;1/P)mgzg{;l/m(gi) +<t>b G*(VO)IL, (0.00.Ly, Ly, MLy (@)
+l <1>P (g(v), H(vi)”Lp«O’w)yH;]/ZOHJIOHJZ(Qt))

+ 1< 1> @O BV 0,000, oy, 1Ly (@)

+l<e>? g(vi)”Hp'((O,oo),qu/zﬂqu MLy, (Q4)

< C(Ivoll + E@B*F, v5)?).

Here,

Vol = D% INollgzrmge

9=41/2.91,92
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! !
2
I [ Vewds @.VuPwll, . < [ 196l dslul
0 0 -
—bp’ b
S f(; <t> P d[” <ft> u”Lp((O’m)’ng)||u||Lq2,
! 3
2
I [ veowasw.vu. v, < [ 19wl diluly
0 0
—bp’ b
< fo <> dr )] < 15" ully gz, 0l

for g = q1, q2-

Dec.30. 2021
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Secondly,
05 (045 + uy) — Div (S*(uy) — O51) = Aouy inQx(0,7),
divuy =0 inQx(0,7),
[u] =0, [(S(u2)—@Dn]=0 onT,
ll§|,=0 =0 in Q*,

by b +
I<t> u2||L,,((o,oo),H§l/2mHgl nHZ @) II<t> 6[“2||L,,((0,<>0),qu/zﬂquﬂqu(Qi))

b .+
< Cll < t>7 U5l (0.00).Ly, 0Ly, MLy, (@)
< C(Ivoll + E@*F, v¥)?).
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Thirdly,

pEouE - Div(S*(ul) - Q51 = dpui i Qx(0,7),
divuf =0  inQx(0,7),
[u3] =0, [(S(u3)-Q3Dn]=0  onT,
ll3i|t:() =0 in Q*.

By Duhamel’s principle,

!
us = AOL T(t — s)u; (s) ds.
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Decay estimate of semigroup associated with Stokes

equations,

Let {T'(r)}:>0 be a continuouis semi-group which is analytic and associated with
equations:

pf(Ou* —Div(S*(u*) - 0 =0, diva* = in Q* x (0,7),
[u] =0, [(S(m)—QODn]=0 onT, (7)
Ut =V, in Q*.

We know the following L,-L, decay estimates:

N

1_1
IT@uollz, 0 < CF HE 2 ugll o,
IV T (DI, =) < CE 7' PP|ugllL, =)
1@s, VHT(Dugllz, @) < C1 P9 gl o)

forany s> 1withl <g <p < co.

oo —min Y (L L) LN
N =mimn(—|— — — -, —
aip @) =MS 22

N(l 1 N
), o2(p,q) = min(—= (— - —) +1,—).
p 2 \q

p
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L,-L, decay estimate

We write

f
u3 = A j(; T(t — s)u; (s) ds.

We estimate:

z 1/2 r—1 t
Iwseol, < [ 91wl ds={ [+ [ e [ JvTe-suio, é
0 0 t/2 t—1

By the L,-L, decay estimate, we have

/2 ~ N
Mm@sq£<ww“ww6wmmw

—a+y (7 b\ b
< C(t/2) ( 2qz)(f <t>"P dt) | <t> u;”LP((O,oo),Lq]/z)
0

for g = g, or ¢g,. Here,
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Thus,

N
[| <t >b 1||Lp((2,00),Lq) <(Cll<t >b ll;”Lp((()!oo),qu/z). o+ 2—q2 - b)P > 1)

r—1
—(1+4-
W@l <C | =" g ()l , ds.
t/2
"~ )
<t>P @), < € (r ) 1) <5 SP uEO)ll,, . ds
12
-1 1+ 1/p' =1 —(1+ ) [ I/p
<C(| -7 "Ras) V(| -9 (< s S g, ) ds)
t/2 t/2

Thus, by Fubini’s theorem

a 1/p 0 (e
( f2 (<t>" W@l df) ™ < C( N (=53 ds)ll < 1 >° WSl oty -
1
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Since u; (t) belongs to the domain of the associated linearized equations for all
t > 0, we have

t !
1O, < € [ 19T = 050l ds <€ [ ustoly ds
-1 t—1

! i " N 1/p
<t>" @, < ( f ds) " ( f (< s >" 3 ()l ) ds) .
t—1 -1

Thus, by Fubini’s theorem

o Up ' N
( f2 (<t >0 |l Y dr) "~ < C( J,: 1 ds)ll < t >° W3l (,0on2)-
Summing up, we have obtained

2+ + £12
| < t>" Vil .mr,) < CIZ N, 0000, o2y < ClIVoll + EVH)).

To estimate for ¢ € (0,2), we use the L,-L, maximal regularity. If we set
u* =37, u¥, we have

E@*) < C(lIvoll + EWH)).

This implies the global well-posedness for small initial data.
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