Global wellposedness for two phase problem of Navier-Stokes equations in unbounded domains

Yoshihiro Shibata

Department of Mathematics, Waseda University

Adjunct Faculty member in the Department of Mechanical Engineering and Materials Science, University of Pittsburgh

International Workshop on Multiphase Flows:
Analysis, Modelling and Numerics
November 30-December 3, 2021, Waseda Univ. Tokyo, Japan
Acknowlegement: Partially supported by JSPS Grant-in-aid for Scientific
Research (A) 17H0109,
Top Global University Project.

Kato method

According to a work due to T. Kato, Math. Z. **187** (1984), 471–480, to solve the Navier-Stokes equations:

$$\partial_t \mathbf{u} - \mathbf{u} \cdot \nabla \mathbf{u} - \mathrm{Div} (\mu \mathbf{D}(\mathbf{u}) - p \mathbf{I}) = 0, \quad \mathrm{div} \, \mathbf{u} = 0 \quad \text{in } \Omega \times (0, \infty),$$

$$\mathbf{u}|_{\Gamma} = 0, \quad \mathbf{u}|_{t=0} = \mathbf{u}_0 \quad \text{in } \Omega,$$

where Ω is a domain in \mathbb{R}^N ($N \geq 2$) and Γ its boundary, if we know the existence of Stokes semigroup $\{T(t)\}_{t\geq 0}$, which is analytic, and the L_p - L_q decay estimate:

$$||T(t)f||_{L_{q}} \leq C_{p,q} t^{-\frac{N}{2}\left(\frac{1}{p} - \frac{1}{q}\right)} ||f||_{L_{p}} \quad 1 \leq p \leq q \leq \infty;$$

$$||\nabla T(t)f||_{L_{q}} \leq C_{p,q} t^{-\frac{1}{2} - \frac{N}{2}\left(\frac{1}{p} - \frac{1}{q}\right)} ||f||_{L_{p}} \quad 1 \leq p \leq q \leq N,$$

for any t > 1, then, we can prove the global well-posedness for small initial data $\mathbf{u}_0 \in L_N(\Omega)$.

An idea of Kato's proof

Apply Stokes semigroup to reduce the problem to the following integral equations:

$$\mathbf{u} = \int_0^t T(t-s)P(\mathbf{u} \cdot \nabla \mathbf{u})(\cdot, s) \, ds,$$

P being the Helmholtz projection, we can show the global well-posedness by using a standard iteration scheme in the underlying space \mathcal{I}_{ϵ} with

$$\begin{split} \boldsymbol{I}_{\epsilon} &= \{ \mathbf{u} \in C^0((0,\infty), H_N^1(\Omega) \cap L_p(\Omega) \mid \lim_{t \to 0+} \|\mathbf{u}(\cdot,t) - \mathbf{u}_0\|_{L_N(\Omega)} = 0, \\ \sup_{0 < t < \infty} \|\mathbf{u}(\cdot,t)\|_{L_N(\Omega)} &+ \sup_{0 < t < \infty} t^{1/2} \|\nabla \mathbf{u}(\cdot,t)\|_{L_N(\Omega)} + \sup_{0 < t < \infty} t^{\frac{1}{2} - \frac{N}{2p}} \|\mathbf{u}(\cdot,t)\|_{L_p(\Omega)} \le \epsilon \} \end{split}$$

with some exponent p with $N and small positive number <math>\epsilon$.

Quasilinear problem in unbounded domains

We consider

$$\partial_t \mathbf{u} - A\mathbf{u} = \mathbf{F}(\mathbf{u}) \quad \text{in } \Omega \times (0, \infty), \quad B\mathbf{u}|_{\Gamma} = \mathbf{G}(\mathbf{u}), \quad \mathbf{u}|_{t=0} = \mathbf{u}_0.$$

Here, $B\mathbf{u}|_{\Gamma} = \mathbf{G}(\mathbf{u})$ is a boundary condition, $\mathbf{F}(\mathbf{u})$ and $\mathbf{G}(\mathbf{u})$ are nonlinear functions of \mathbf{u} and its derivatives, like $\mathbf{F}(\mathbf{u}) = f(\nabla \mathbf{u})(\partial_t \mathbf{u}, \nabla^2 \mathbf{u})$, $\mathbf{G}(\mathbf{u}) = g(\nabla \mathbf{u})\nabla \mathbf{u}$, quasi-linear type. I want to treat this problem in the same spirit as Kato's one. (1) maximal L_p - L_q regularity for the time shifted linear problem:

$$\partial_t \mathbf{u} + \lambda_0 \mathbf{u} - A \mathbf{u} = \mathbf{f} \quad \text{in } \Omega \times (0, \infty), \quad B \mathbf{u}|_{\Gamma} = \mathbf{g} \quad \mathbf{u}|_{t=0} = \mathbf{u}_0.$$

with some large constant $\lambda_0 > 0$. In the Stokes operator case, we have

$$|| < t >^{b} \partial_{t} \mathbf{u}||_{L_{p}((0,\infty),L_{q}(\Omega))} + || < t >^{b} \mathbf{u}||_{L_{p}((0,\infty),H_{q}^{2}(\Omega))}$$

$$\leq C||\mathbf{u}||_{B_{q,p}^{2(1-1/p)}(\Omega)} + || < t >^{b} \mathbf{f}||_{L_{p}((0,\infty),L_{q}(\Omega))} + || < t >^{b} \mathbf{g}||_{H_{p}^{1/2}((0,\infty),L_{q}(\Omega))}$$

$$+ || < t >^{b} \mathbf{g}||_{L_{p}((0,\infty),H_{q}^{1}(\Omega))}).$$

Note that the Stokes operator means that an operator obtained by eliminating the pressure term.

(2) (A,B) generates an continuous analytic semigroup $\{T(t)\}_{t\geq 0}$. In the Stokes operator case, the domain is $\{\mathbf{u}\in H_q^2(\Omega)\mid \mathrm{div}\,\mathbf{u}=0,\ B\mathbf{u}|_{\Gamma}=0\}$. And, $\{T(t)\}_{t\geq 0}$ satisfies the L_p - L_q decay properties:

$$\begin{split} \|T(t)f\|_{L_q} &\leq C_{p,q} t^{-\frac{N}{2}\left(\frac{1}{p}-\frac{1}{q}\right)} \|f\|_{L_p} \ ; \\ \|(\nabla,\nabla^2,\partial_t)T(t)f\|_{L_q} &\leq C_{p,q} t^{-\min(\frac{1}{2}+\frac{N}{2}\left(\frac{1}{p}-\frac{1}{q}\right),\frac{N}{2p}\right)} \|f\|_{L_p} \end{split}$$

for any t > 1 and $1 \le p \le q \le \infty$.

In the Navier-Stoke equation case, we can solve the quasi-linear problem by using a standard iteration scheme in the underlying space \mathcal{J}_{ϵ} with

$$\begin{split} \mathcal{J}_{\epsilon} &= \{ \mathbf{u} \in H^{1}_{p}((0,\infty), L_{q_{1}} \cap L_{q_{2}}) \cap L_{p}((0,\infty), H^{2}_{q_{1}} \cap H^{2}_{q_{2}}) \mid \lim_{t \to 0+} \|\mathbf{u}(\cdot,t) - \mathbf{u}_{0}\|_{L_{q_{1}} \cap L_{q_{2}}} = 0, \\ \mathcal{E}(\mathbf{u}) &= \| < t >^{b} \mathbf{u}\|_{L_{\infty}((0,\infty), L_{q_{1}} \cap L_{q_{2}})} + \| < t >^{b} \nabla \mathbf{u}\|_{L_{p}((0,\infty), H^{1}_{q_{1}})} \\ &+ \| < t >^{b} \mathbf{u}\|_{L_{n}((0,\infty), H^{2}_{\infty})} + \| < t >^{b} \partial_{t} \mathbf{u}\|_{L_{p}((0,\infty), L_{q_{1}} \cap L_{q_{2}})} \}. \end{split}$$

For example, we can choose p, q_1 , q_2 , and b as

$$\frac{1}{q_1} = \frac{1}{N} + \frac{1}{q_2}, \quad q_2 > \max(N, \frac{2N}{N-2}), \quad b > 0, \quad (1 + \frac{N}{2q_2} - b)p > 1,$$

$$bp' > 1, \quad 2/p + 1/q_2 \neq 1, \quad N \ge 3.$$

First, for $\mathbf{v} \in \mathcal{J}_{\epsilon}$, we consider the time shifted equation

$$\partial_t \mathbf{u}^1 + \lambda_0 \mathbf{u}^1 - A \mathbf{u}^1 = \mathbf{F}(\mathbf{v}) \quad \text{in } \Omega \times (0, \infty), \quad B \mathbf{u}|_{\Gamma} = \mathbf{G}(\mathbf{v}), \quad \mathbf{u}^1|_{t=0} = \mathbf{u}_0.$$

By the maximal L_p - L_q regularity,

$$\tilde{\mathcal{E}}(\mathbf{u}^1) := \sum_{q=q_1/2, q_1, q_2} (\| < t >^b \partial_t \mathbf{u}^1 \|_{L_p((0,\infty), L_q)} + \| < t >^b \mathbf{u} \|_{L_p((0,\infty), H_q^2)}) \le C(\|\mathbf{u}_0\| + \mathcal{E}(\mathbf{v})^2).$$

Next, we consider the first compensation equations:

$$\partial_t \mathbf{u}^2 + \lambda_0 \mathbf{u}^2 - A \mathbf{u}^2 = \lambda_0 \mathbf{u}^1$$
 in $\Omega \times (0, \infty)$, $B \mathbf{u}^2|_{\Gamma} = 0$, $\mathbf{u}^2|_{t=0} = 0$.

Then, by the maximal L_p - L_q regularity,

$$\tilde{\mathcal{E}}(\mathbf{u}^2) \le C\mathcal{E}(\mathbf{u}^1) \le C(\|\mathbf{u}_0\| + \mathcal{E}(\mathbf{v})^2).$$

Finally, we consider the second compensation equations:

$$\partial_t \mathbf{u}^3 - A\mathbf{u}^3 = \lambda_0 \mathbf{u}^2 \quad \text{in } \Omega \times (0, \infty), \quad B\mathbf{u}^3|_{\Gamma} = 0, \quad \mathbf{u}^3|_{t=0} = 0.$$

The role of the first compensation equations is to have \mathbf{u}^2 is in the domain of operators (A,B), namely in particular, $B\mathbf{u}^2|_{\Gamma}=0$ for all t>0.

Then, by using the L_p - L_q decay estimate for t>1 and the standard analytic semigroup estimate:

$$\|\partial_t T(t)\mathbf{u}_0\|_{L_q} + \|T(t)\mathbf{u}_0\|_{H_q^2} \le C\|\mathbf{u}_0\|_{H_q^2}$$

for 0 < t < 1, we have

$$\mathcal{E}(\mathbf{u}^3) \le C\tilde{\mathcal{E}}(\mathbf{u}^2) \le C(\|\mathbf{u}_0\| + \mathcal{E}(\mathbf{v})^2).$$

Set $\mathbf{u} = \mathbf{u}^1 + \mathbf{u}^2 + \mathbf{u}^3$, then \mathbf{u} satisfies the linearized equations:

$$\partial_t \mathbf{u} - A\mathbf{u} = \mathbf{F}(\mathbf{v}) \quad \text{in } \Omega \times (0, \infty), \quad B\mathbf{u}|_{\Gamma} = \mathbf{G}(\mathbf{v}), \quad \mathbf{u}|_{t=0} = \mathbf{u}_0,$$

and the estimate:

$$\mathcal{E}(\mathbf{u}) \le C(\|\mathbf{u}_0\| + \mathcal{E}(\mathbf{v})^2).$$

This implies the global wellposedness for small initial data.

Formulation of 2 phase problems

Let Ω_t^+ be a time dependent, bounded domain in \mathbb{R}^N $(N \geq 2)$, and $\Omega_t^- = \mathbb{R}^N \setminus \overline{\Omega_t^+}$. Let Γ_t be the boundary of Ω_t^+ and \mathbf{n}_t the unit normal to Γ_t oriented from Ω_t^+ into Ω_t^- . We assume that immissible fluids \mathcal{F}^\pm occupy Ω_t^\pm and the conservation of mass and the conservation of momentum are described by the Navier-Stokes equations.

Equations

$$\begin{split} \partial_t \rho^\pm + \operatorname{div} \left(\rho^\pm \mathbf{v}^\pm \right) &= 0 \qquad \text{ in } \Omega_t^\pm, \\ \rho^\pm (\partial_t \mathbf{v}^\pm + \mathbf{v}^\pm \cdot \nabla \mathbf{v}^\pm) - \operatorname{Div} \left(\mathbf{S}^\pm (\mathbf{v}^\pm) - P^\pm \mathbf{I} \right) &= 0 \qquad \text{ in } \Omega^\pm. \end{split}$$

for time t>0. Here, ρ^{\pm} denotes the mass density of \mathcal{F}^{\pm} , $\mathbf{v}^{\pm}=(v_1^{\pm},\ldots,v_N^{\pm})^{\top}$ the velocity field of \mathcal{F}^{\pm} , and P^{\pm} the pressure field of \mathcal{F}^{\pm} . And

$$\mathbf{S}^{\pm}(\mathbf{v}^{\pm}) = \mu^{\pm}\mathbf{D}(\mathbf{v}^{\pm}) + \nu^{\pm}\operatorname{div}\mathbf{v}^{\pm}\mathbf{I}, \quad \mathbf{D}(\mathbf{v}^{\pm}) = \nabla\mathbf{v}^{\pm} + (\nabla\mathbf{v}^{\pm})^{\top},$$

 μ^{\pm} , ν^{\pm} are viscosity constants such that $\mu^{\pm} > 0$ and $\mu^{\pm} + \nu^{\pm} > 0$.

- (1) If \mathcal{F}^{\pm} is an incompressible, viscous fluid, we assume that $\rho^{\pm} = \rho_{*}^{\pm}$, which is a given, positive constant describing the mass density of the reference fluid. And so, div $\mathbf{v}^{\pm} = 0$ and P^{\pm} is unknown.
- (2) If \mathcal{F}^{\pm} is a comressible, viscous fluid, we assume that $\rho^{\pm}=\rho_*^{\pm}+\eta^{\pm}$, and $P^{\pm}=\mathfrak{p}^{\pm}(\rho^{\pm})$ is a C^{∞} function of ρ^{\pm} defined on $(0,\infty)$ and assumed that $(\mathfrak{p}^{\pm})'(\rho^{\pm})>0$ for any $\rho^{\pm}\in(0,\infty)$.

Interface conditions

$$[\mathbf{v}] = 0, \quad [(\mathbf{S}(\mathbf{v}) - P\mathbf{I})\mathbf{n}_t] = (\sigma H(\Gamma_t) - P_0)\mathbf{n}_t,$$

$$V_{\Gamma_t} = \mathbf{n}_t \cdot \mathbf{v}^+$$

on Γ_t for t > 0. Here,

$$[f](x_0) = \lim_{x \to x_0 \atop x \in \Omega_t^+} f^+(x) - \lim_{x \to x_0 \atop x \in \Omega_t^-} f^-(x) \quad \text{for } x_0 \in \Gamma_t$$

which denotes the jump of functions along Γ_t .

 V_{Γ_t} denotes the evolution speed of Γ_t in the \mathbf{n}_t direction and $V_{\Gamma_t} = \mathbf{n}_t \cdot \mathbf{v}^+$ means the non-slip condition of Γ_t .

 σ is a non-negative constant.

- When $\sigma > 0$, the σ describes the coefficient of surface tension.
- When $\sigma = 0$, we do not consider surface tension on Γ_t .

Initial conditions

$$(\rho^{\pm}, \mathbf{v}^{\pm})|_{t=0} = (\rho^{\pm}_{*} + \theta^{\pm}_{0}, \mathbf{v}^{\pm}_{0}), \quad \Omega^{\pm}_{t}|_{t=0} = \Omega^{\pm}.$$

If we consider the incompressible, viscous fluid case, $\theta_0=0$. Ω^\pm is a reference domain, which is a uniformly smooth domain whose boundary Γ is a smooth compact hypersurface.

Local well-posedness

The local wellposedness follows from the maximal L_p - L_q regularity for the incompressible-incompressible, incompressible-compressible, and compressible-compressible case. In fact,

- Incompressible-incompressible case: Maryani and Saito Diff. Int. Eqns., 3, 1–52, 2017 (Linear theory)
- Local well-posedness: Shibata and Saito, Chapter 3 in Fluids Under Pressure eds. T. Bodnar, G. P. Galdi, and S. Necasova, Birkhauser, 2020.
- Incompressible-Compressible: Linear theory by T. Kubo, Y. Shibata and K. Soga, Boundary Value Problem, 2014, 141,
- Local well-posedness: T. Kubo and Y. Shibata, Mathematics 2021 9, 621. https://doi.org/103390/matb9060621
- Compressible-compressible, linear theory and local well-posedness by T. Kubo, Y. Shibata and K. Soga, Discrete Contin. Dyn. Syst. 36 (2016), 3741–3774.

When two phase flows lie in a bounded container, linear thoery, local well-posedness and global well-posedness have been studied by Denisova and Solonnikov and J. Pruess and G. Simonnette.

Global well-posedness $\sigma = 0$, Incompressible-Incompressible case

In the case where $\sigma=0$, the Lagrange coordinate is used in the standard manner. But, some difficulty to treat divergence condition, I use local Lagrange transformation. Let $\varphi\in C_0^\infty(\mathbb{R}^N)$ which equals 1 on B_R and 0 outside of B_{2R} , where R is a large number such that $\Omega^c\subset B_{R/2}$. Let $y=(y_1,\ldots,y_N)^{\top}\in\Omega$ be Lagrange coordinates and $\mathbf{u}^{\pm}(y,t)$ the velocity fields in the Lagrange coordinates. We consider Lagrange transformation:

$$x = X_{\mathbf{u}}^{\pm}(y, t) = y + \int_0^t \varphi(y) \mathbf{u}(y, s) \, ds. \tag{1}$$

Assume that it holds

$$\int_0^T \|\nabla(\varphi(\cdot)\mathbf{u}^\pm(\cdot,t))\|_{L_\infty(\Omega^\pm)}\,dt \leq \delta$$

with small positive constant δ as far as solutions \mathbf{u}^\pm exist for $t \in (0,T)$. Under this condition and suitable regularity assumptions on \mathbf{u}^\pm , the map $x = X_\mathbf{u}^\pm(y,t)$ is diffeomorphisms from Ω^\pm onto $\Omega_t^\pm = \{x = X_\mathbf{u}^\pm(y,t) \mid y \in \Omega^\pm\}$.

Equations in Lagrange coordinates

Let $\mathbf{u}^{\pm}(y,t)$ together with $Q^{\pm}(y,t) = P^{\pm}((X_{\mathbf{u}}^{\pm})^{-1}(y,t),t)$ satisfy the equations:

$$\rho_*^{\pm} \partial_t \mathbf{u}^{\pm} - \text{Div} \left(\mathbf{S}^{\pm} (\mathbf{u}^{\pm}) - Q^{\pm} \mathbf{I} \right) = \mathbf{G}^{\pm} (\mathbf{u}^{\pm}) \quad \text{in } \Omega \times (0, T),$$

$$\text{div } \mathbf{u}^{\pm} = g^{\pm} (\mathbf{u}^{\pm}) = \text{div } \mathbf{g} (\mathbf{u}^{\pm}) \quad \text{in } \Omega \times (0, T),$$

$$[\mathbf{u}] = 0, \quad [(\mathbf{S}(\mathbf{u}) - Q\mathbf{I})\mathbf{n}] = [\mathbf{H}(\mathbf{u})] \quad \text{on } \Gamma,$$

$$\mathbf{u}^{\pm}|_{t=0} = \mathbf{v}_0^{\pm} \quad \text{in } \Omega^{\pm}.$$

$$(2)$$

Here, F^{\pm} , \mathbf{G}^{\pm} , H are nonlinear functions consist of products of some functions of $\mathbf{k}^{\pm} = \int_0^t \nabla(\varphi \mathbf{u}^{\pm}) \, ds$, and $\nabla^2 \mathbf{u}^{\pm}$, $\nabla \mathbf{k}^{\pm}$ and so on. Like

$$\mathbf{G}^{\pm}(\mathbf{u}^{\pm}) = V_1(\mathbf{k}^{\pm})(\partial_t \mathbf{u}^{\pm}, \nabla^2 \mathbf{u}^{\pm}) + W(\mathbf{k}^{\pm}) \int_0^t \nabla^2(\varphi \mathbf{u}^{\pm})) \, ds \, \nabla \mathbf{u}^{\pm},$$

$$g(\mathbf{u}^{\pm}) = V_2(\mathbf{k}^{\pm}) \nabla \mathbf{u}^{\pm}, \quad \mathbf{g}(\mathbf{u}^{\pm}) = V_2(\mathbf{k}^{\pm}) \mathbf{u}^{\pm}, \quad \mathbf{H}(\mathbf{u}^{\pm}) = V_4(\mathbf{k}^{\pm}) \nabla \mathbf{u}^{\pm}.$$

Here, $V_i(0) = 0$.

In fact, Jacobi matrix of the transform $x = X_{\mathbf{u}}^{\pm}(y,t)$ is $\partial x/\partial y = \mathbf{I} + \int_{0}^{t} \nabla(\varphi \mathbf{u}^{\pm}) \, ds$, and so

$$\nabla_x = (\mathbf{I} + \mathbf{V}_0(\mathbf{k}^{\pm}))\nabla_y, \quad \mathbf{n}_t = \frac{(\mathbf{I} + \mathbf{V}_0(\mathbf{k}^{+})^{\top})\mathbf{n}}{|(\mathbf{I} + \mathbf{V}_0(\mathbf{k}^{+})^{\top})\mathbf{n}|}$$

with some matrices \mathbf{V}_0 of analytic functions of \mathbf{k} with $|\mathbf{k}| < \delta$. Here, notice that $\mathbf{v}^+ = \mathbf{v}^-$ on Γ_t as follows from $[\mathbf{v}] = 0$ on Γ_t .

Global well-posdedness

Assume that $N \ge 3$. Choose p, q_1 , q_2 , b as follows:

$$\begin{split} 1/q_1 &= 1/N + 1/q_2, \ q_2 > \max(N, \frac{2N}{N-2}), \quad b > 0, \quad (1 + \frac{N}{2q_2} - b)p > 1, \\ bp' &> 1, \quad 2/p + 1/q_2 \neq 1, \ 0 < \sigma < 1/2. \end{split}$$

Then, there exists an $\epsilon > 0$ such that for initial data \mathbf{v}_0^\pm satisfying the following conditions:

$$\begin{split} & \mathbf{v}_0^{\pm} \in B_{q_1/2,p}^{2(1-1/p)}(\Omega^{\pm}) \cap B_{q_1,p}^{2(1-1/p)}(\Omega^{\pm}) \cap B_{q_2,p}^{2(1-1/p)}(\Omega^{\pm}), \\ & [\mathbf{v}_0] = 0, \quad [(\mathbf{S}(\mathbf{v}_0)\mathbf{n})_{\tau}] = 0 \quad \text{on } \Gamma, \ \ (\mathbf{d}_{\tau} = \mathbf{d} - < \mathbf{d}, \mathbf{n} > \mathbf{n}) \end{split}$$

problem 3 (equations the Lagrange description) admits unique solutions $u^{\scriptscriptstyle\pm}$ with

$$\mathbf{u}^{\pm} \in L_{p}((0,\infty), H_{q_{1}}^{2} \cap H_{q_{2}}^{2}(\Omega^{\pm})) \cap H_{p}^{1}((0,\infty), L_{q_{1}} \cap L_{q_{2}}(\Omega^{\pm}))$$

with $\mathcal{E}(\mathbf{u}^{\pm}) \leq C\epsilon$, where C is a constant independent of $\epsilon > 0$.

$$\begin{split} \mathcal{E}(\mathbf{u}^{\pm}) &= \| < t >^b \mathbf{u}^{\pm} \|_{L_{\infty}((0,\infty),L_{q_1} \cap L_{q_2}(\Omega^{\pm}))} \\ &+ \| < t >^b (\nabla \mathbf{u}^{\pm}, \nabla^2 \mathbf{u}^{\pm}) \|_{L_p((0,\infty),L_{q_1}(\Omega^{\pm}))} \\ &+ \| < t >^b \mathbf{u}^{\pm} \|_{L_p((0,\infty),H_{q_2}^2(\Omega^{\pm}))} \\ &+ \| < t >^b \partial_t \mathbf{u}^{\pm} \|_{L_p((0,\infty),L_{q_1} \cap L_{q_2}(\Omega^{\pm}))}. \end{split}$$

A sketch of proof

Given v^{\pm} , we consider the following linearized equations:

$$\rho_*^{\pm} \partial_t \mathbf{u}^{\pm} - \text{Div} \left(\mathbf{S}^{\pm} (\mathbf{u}^{\pm}) - Q^{\pm} \mathbf{I} \right) = \mathbf{G}^{\pm} (\mathbf{v}^{\pm}) \qquad \text{in } \Omega \times (0, T),$$

$$\text{div } \mathbf{u}^{\pm} = g(\mathbf{v}^{\pm}) = \text{div } \mathbf{g}(\mathbf{v}^{\pm}) \qquad \text{in } \Omega \times (0, T),$$

$$[\mathbf{u}] = 0, \quad [(\mathbf{S}(\mathbf{u}) - Q\mathbf{I})\mathbf{n}] = [\mathbf{H}(\mathbf{v})] \qquad \text{on } \Gamma,$$

$$\mathbf{u}^{\pm}|_{t=0} = \mathbf{v}_0^{\pm} \qquad \text{in } \Omega^{\pm}.$$
(3)

First, we consider time shifted equations:

$$\rho_*^{\pm}(\partial_t \mathbf{u}_1^{\pm} + \lambda_0 \mathbf{u}_1^{\pm}) - \text{Div}\left(\mathbf{S}^{\pm}(\mathbf{u}_1^{\pm}) - Q_1^{\pm}\mathbf{I}\right) = \mathbf{G}^{\pm}(\mathbf{v}^{\pm}) \qquad \text{in } \Omega \times (0, T),$$

$$\text{div } \mathbf{u}_1^{\pm} = g(\mathbf{v}^{\pm}) = \text{div } \mathbf{g}(\mathbf{v}^{\pm}) \qquad \text{in } \Omega \times (0, T),$$

$$[\mathbf{u}_1] = 0, \quad [(\mathbf{S}(\mathbf{u}_1) - Q_1\mathbf{I})\mathbf{n}] = [\mathbf{H}(\mathbf{v}^{\pm})] \qquad \text{on } \Gamma,$$

$$(\eta_1^{\pm}, \mathbf{u}_1^{\pm})|_{t=0} = (\theta_0^{\pm}, \mathbf{v}_0^{\pm}) \qquad \text{in } \Omega^{\pm}.$$

$$(4)$$

Time shifted equations

By the maximal L_p - L_q regularity results due to Mariani and Saito

$$\begin{split} &\| < t >^b \mathbf{u}_1^{\pm} \|_{L_p((0,\infty),H_{q_1/2}^2 \cap H_{q_1}^2 \cap H_{q_2}^2(\Omega^{\pm}))} + \| < t >^b \partial_t \mathbf{u}_1^{\pm} \|_{L_p((0,\infty),L_{q_1/2} \cap L_{q_1} \cap L_{q_2}(\Omega^{\pm}))} \\ & \leq C \{ \| \mathbf{v}_0^{\pm} \|_{B_{q_1/2}^{2(1-1/p)} \cap B_{q_1,p}^{2(1-1/p)} \cap B_{q_2,p}^{2(1-1/p)}(\Omega^{\pm})} + \| < t >^b \mathbf{G}^{\pm}(\mathbf{v}^{\pm}) \|_{L_p((0,\infty),L_{q_1/2} \cap L_{q_1} \cap L_{q_2}(\Omega^{\pm}))} \\ & + \| < t >^b (g(\mathbf{v}^{\pm}),\mathbf{H}(\mathbf{v}^{\pm}) \|_{L_p((0,\infty),H_{q_1/2}^1 \cap H_{q_1}^1 \cap H_{q_2}^1(\Omega^{\pm}))} \\ & + \| < t >^b (g(\mathbf{v}^{\pm}),\mathbf{H}(\mathbf{v}^{\pm}) \|_{H_p^{1/2}((0,\infty),L_{q_1/2} \cap L_{q_1} \cap L_{q_2}(\Omega^{\pm}))} \\ & + \| < t >^b \mathbf{g}(\mathbf{v}^{\pm}) \|_{H_p^1((0,\infty),L_{q_1/2} \cap L_{q_1} \cap L_{q_2}(\Omega^{\pm}))} \\ & \leq C(\| \mathbf{v}_0 \| + \mathcal{E}(\theta^{\pm},\mathbf{v}^{\pm})^2). \end{split}$$

Here,

$$\|\mathbf{v}_0\| = \sum_{q=q_1/2,q_1,q_2} \|\mathbf{v}_0\|_{B^{2(1-1/p)}_{q,p}(\Omega^{\pm})}.$$

$$\begin{split} &\| \int_0^t \nabla(\varphi \mathbf{u}) \, ds \, (\mathbf{u}, \nabla \mathbf{u}, \nabla^2 \mathbf{u}) \|_{L_{q_1/2}} \leq \int_0^t \| \nabla(\varphi \mathbf{u}) \|_{L_{q_2}} \, ds \| \mathbf{u} \|_{H_{q_2}^2} \\ &\leq \int_0^\infty < t >^{-bp'} \, dt \, \| < t >^b \, \mathbf{u} \|_{L_p((0,\infty),H_{q_2}^2)} \| \mathbf{u} \|_{L_{q_2}}, \\ &\| \int_0^t \nabla(\varphi \mathbf{u}) \, ds \, (\mathbf{u}, \nabla \mathbf{u}, \nabla^2 \mathbf{u}) \|_{L_q} \leq \int_0^t \| \nabla(\varphi \mathbf{u}) \|_{L_\infty} \, ds \| \mathbf{u} \|_{H_{q_2}^2} \\ &\leq \int_0^\infty < t >^{-bp'} \, dt \, \| < t >^b \, \mathbf{u} \|_{L_p((0,\infty),H_{q_2}^2)} \| \mathbf{u} \|_{H_{q_2}^2} \end{split}$$

for $q = q_1, q_2$.

Secondly,

$$\rho_*^{\pm}(\partial_t \mathbf{u}_2^{\pm} + \lambda_0 \mathbf{u}_2^{\pm}) - \text{Div}\left(\mathbf{S}^{\pm}(\mathbf{u}_2^{\pm}) - Q_2^{\pm}\mathbf{I}\right) = \lambda_0 \mathbf{u}_1^{\pm} \quad \text{in } \Omega \times (0, T),$$

$$\text{div } \mathbf{u}_2^{\pm} = 0 \quad \text{in } \Omega \times (0, T),$$

$$[\mathbf{u}_2] = 0, \quad [(\mathbf{S}(\mathbf{u}_2) - Q_2\mathbf{I})\mathbf{n}] = 0 \quad \text{on } \Gamma,$$

$$\mathbf{u}_2^{\pm}|_{t=0} = 0 \quad \text{in } \Omega^{\pm}.$$
(5)

$$\begin{split} &\|< t>^b \mathbf{u}_2^{\pm}\|_{L_p((0,\infty),H_{q_1/2}^2\cap H_{q_1}^2\cap L_{q_2}(\Omega^{\pm}))} + \|< t>^b \partial_t \mathbf{u}_2^{\pm}\|_{L_p((0,\infty),L_{q_1/2}\cap L_{q_1}\cap L_{q_2}(\Omega^{\pm}))} \\ &\leq C\|< t>^b \mathbf{u}_1^{\pm}\|_{L_p((0,\infty),L_{q_1/2}\cap L_{q_1}\cap L_{q_2}(\Omega^{\pm}))} \\ &\leq C(\|\mathbf{v}_0\| + \mathcal{E}(\theta^{\pm},\mathbf{v}^{\pm})^2). \end{split}$$

Thirdly,

$$\rho_*^{\pm} \partial_t \mathbf{u}_3^{\pm} - \text{Div} \left(\mathbf{S}^{\pm} (\mathbf{u}_3^{\pm}) - Q_3^{\pm} \mathbf{I} \right) = \lambda_0 \mathbf{u}_2^{\pm} \qquad \text{in } \Omega \times (0, T),$$

$$\text{div } \mathbf{u}_3^{\pm} = 0 \qquad \text{in } \Omega \times (0, T),$$

$$\left[\mathbf{u}_3 \right] = 0, \quad \left[(\mathbf{S}(\mathbf{u}_3) - Q_3 \mathbf{I}) \mathbf{n} \right] = 0 \qquad \text{on } \Gamma,$$

$$\mathbf{u}_3^{\pm}|_{t=0} = 0 \qquad \text{in } \Omega^{\pm}.$$
(6)

By Duhamel's principle,

$$\mathbf{u}_3^{\pm} = \lambda_0 \int_0^t T(t-s)\mathbf{u}_2^{\pm}(s) \, ds.$$

Decay estimate of semigroup associated with Stokes equations,

Let $\{T(t)\}_{t\geq 0}$ be a continuouis semi-group which is analytic and associated with equations:

$$\rho_*^{\pm}(\partial_t \mathbf{u}^{\pm} - \operatorname{Div}(\mathbf{S}^{\pm}(\mathbf{u}^{\pm}) - Q^{\pm}\mathbf{I}) = 0, \quad \operatorname{div}\mathbf{u}^{\pm} = 0 \qquad \text{in } \Omega^{\pm} \times (0, T),$$

$$[\mathbf{u}] = 0, \quad [(\mathbf{S}(\mathbf{u}) - Q\mathbf{I})\mathbf{n}] = 0 \qquad \text{on } \Gamma,$$

$$\mathbf{u}^{\pm}|_{t=0} = \mathbf{v}_0^{\pm} \qquad \text{in } \Omega^{\pm}.$$
(7)

We know the following L_p - L_q decay estimates:

$$\begin{split} \|T(t)\mathbf{u}_0\|_{L_p(\Omega^{\pm})} &\leq Ct^{-\frac{N}{2}\left(\frac{1}{q} - \frac{1}{p}\right)} \|\mathbf{u}_0\|_{L_q(\Omega^{\pm})}, \\ \|\nabla T(t)\mathbf{u}_0\|_{L_p(\Omega^{\pm})} &\leq Ct^{-\sigma_1(p,q)} \|\mathbf{u}_0\|_{L_q(\Omega^{\pm})}, \\ \|(\partial_t, \nabla^2)T(t)\mathbf{u}_0\|_{L_p(\Omega^{\pm})} &\leq Ct^{-\sigma_2(p,q)} \|\mathbf{u}_0\|_{L_q(\Omega^{\pm})} \end{split}$$

for any t > 1 with $1 < q \le p \le \infty$.

$$\sigma_1(p,q) = \min(\frac{N}{2}\left(\frac{1}{q} - \frac{1}{p}\right) + \frac{1}{2}, \frac{N}{2q}), \quad \sigma_2(p,q) = \min(\frac{N}{2}\left(\frac{1}{q} - \frac{1}{p}\right) + 1, \frac{N}{2q}).$$

L_p - L_q decay estimate

We write

$$\mathbf{u}_3^{\pm} = \lambda_0 \int_0^t T(t-s) \mathbf{u}_2^{\pm}(s) \, ds.$$

We estimate:

$$\|\nabla^2 \mathbf{u}_3^{\pm}(\cdot,t)\|_{L_q} \leq \int_0^t \|\nabla^2 T(t-s)\mathbf{u}_2^{\pm}(s)\|_{L_q} ds = \left\{\int_0^{t/2} + \int_{t/2}^{t-1} + \int_{t-1}^t \right\} \|\nabla^2 T(t-s)\mathbf{u}_2^{\pm}(s)\|_{L_q} ds.$$

By the L_p - L_q decay estimate, we have

$$||I(t)||_{L_{q}} \leq C \int_{0}^{t/2} (t-s)^{-(1+\frac{N}{2q_{2}})} ||\mathbf{u}_{2}^{\pm}(s)||_{L_{q_{1}/2}} ds$$

$$\leq C(t/2)^{-(1+\frac{N}{2q_{2}})} \Big(\int_{0}^{\infty} \langle t \rangle^{-p'b} dt \Big)^{1/p'} ||\langle t \rangle^{b} \mathbf{u}_{2}^{\pm}||_{L_{p}((0,\infty),L_{q_{1}/2})}$$

for $q = q_1$ or q_2 . Here,

$$1 + \frac{N}{2q_2} = \frac{N}{2} \left(\frac{2}{q_1} - \frac{1}{q_2} \right) = \frac{N}{2} \left(\frac{2}{q_1} - \frac{1}{q_1} \right) + \frac{1}{2}.$$

Thus,

$$|| < t >^b I||_{L_p((2,\infty),L_q)} \le C|| < t >^b \mathbf{u}_2^{\pm}||_{L_p((0,\infty),L_{q_1/2})}.$$
 (: $(1 + \frac{N}{2q_2} - b)p > 1)$

$$\begin{split} & \|H(t)\|_{L_{q}} \leq C \int_{t/2}^{t-1} (t-s)^{-(1+\frac{N}{2q_{2}})} \|\mathbf{u}_{2}^{\pm}(s)\|_{L_{q_{1}/2}} \, ds, \\ & < t >^{b} \|H(t)\|_{L_{q}} \leq C \int_{t/2}^{t-1} (t-s)^{-(1+\frac{N}{2q_{2}})} < s >^{b} \|\mathbf{u}_{2}^{\pm}(s)\|_{L_{q_{1}/2}} \, ds \\ & \leq C \Big(\int_{t/2}^{t-1} (t-s)^{-(1+\frac{N}{2q_{2}})} \, ds \Big)^{1/p'} \Big(\int_{t/2}^{t-1} (t-s)^{-(1+\frac{N}{2q_{2}})} (< s >^{b} \|\mathbf{u}_{2}^{\pm}(s)\|_{L_{q_{1}/2}})^{p} \, ds \Big)^{1/p}. \end{split}$$

Thus, by Fubini's theorem

$$\left(\int_{2}^{\infty} (\langle t \rangle^{b} ||H(t)||_{L_{q}})^{p} dt\right)^{1/p} \leq C\left(\int_{t/2}^{\infty} (t-s)^{-(1+\frac{N}{2q_{2}})} ds\right)||\langle t \rangle^{b} \mathbf{u}_{2}^{\pm}||_{L_{p}((0,\infty),L_{q_{1}/2})}.$$

Since $\mathbf{u}_2^{\pm}(t)$ belongs to the domain of the associated linearized equations for all t>0, we have

$$\begin{split} &\|III(t)\|_{L_q} \leq C \int_{t-1}^t \|\nabla^2 T(t-s) \mathbf{u}_2^{\pm}(s)\|_{L_q} \, ds \leq C \int_{t-1}^t \|\mathbf{u}_2^{\pm}(s)\|_{H_q^2} \, ds, \\ &< t >^b \|III(t)\|_{L_q} \leq \Big(\int_{t-1}^t \, ds\Big)^{1/p'} \Big(\int_{t-1}^t (< s >^b \|\mathbf{u}_2^{\pm}(s)\|_{H_q^2})^p \, ds\Big)^{1/p}. \end{split}$$

Thus, by Fubini's theorem

$$\left(\int_{2}^{\infty} (\langle t \rangle^{b} \| III(t) \|_{L_{q}})^{p} dt\right)^{1/p} \leq C \left(\int_{t-1}^{t} ds\right) \|\langle t \rangle^{b} \mathbf{u}_{2}^{\pm} \|_{L_{p}((0,\infty), H_{q}^{2})}.$$

Summing up, we have obtained

$$\| < t >^b \nabla^2 \mathbf{u}_3^{\pm} \|_{L_p((2,\infty),L_q)} \le C(\|\mathbf{u}_2^{\pm}\|_{L_p((0,\infty),L_{q_1/2} \cap H_q^2)} \le C(\|\mathbf{v}_0\| + \mathcal{E}(\mathbf{v}^{\pm})^2).$$

To estimate for $t \in (0,2)$, we use the L_p - L_q maximal regularity. If we set $\mathbf{u}^{\pm} = \sum_{i=1}^{3} \mathbf{u}_i^{\pm}$, we have

$$\mathcal{E}(\mathbf{u}^{\pm}) \leq C(\|\mathbf{v}_0\| + \mathcal{E}(\mathbf{v}^{\pm})^2).$$

This implies the global well-posedness for small initial data.