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The mathematical model

The quasistationary Stokes flow

» 2D geometry, unbounded fluid domains
QE(t) := {(x, %) ER? . xp = f(t,x1)}

» Far away from the origin the flow is almost stationary (and the
interface almost flat)

» T > 0 is the viscosity of the fluid +
» o > 0 is surface tension coefficient at the moving boundary I'(t)

> Gravity effects are neglected
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The equations of motion

Incompressible Stokes equations
pEAVE —Vpt = 0
in QF(t)
divvt = 0
Notation:

o v is velocity of the fluid +

o pt is the pressure of the fluid +
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The mathematical model

Boundary conditions
Boundary condition on I'(t):

[v] = 0 _
in [(t)
A

where the stress tensor T,(v, p) is given by
Tu(v,p) = —ph + (Vv + (Vv) )
Given any function z : R\ T — R we set z* := z|q+ and

[Z](x) == lim z"— lim =z~

, xerl
Qtoy—x Q—>y—x

Notation
@ x = K(t) is the curvature of I'(t)
e v = v(t) outer unit normal at 9Q~(t)
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The mathematical model

Boundary conditions
Far-field boundary conditions:

f(t,§) — 0 for ¢ — o0

(vE, pF)(x) — 0 for |x| = oo

The normal velocity V/,, of I'(t) is given by

Vo = vi.v onT(t)
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The mathematical model

We arrive at the following system

pEAVE —Vpt = 0 in Q%(¢) )
divvt = 0 in QF(¢)
[v] = 0 on I'(t)
[Tu(v,p)lv = —okv onl(t) fort >0
f¢§) — 0 for [£] — o0
(vE, pF)(x) — 0 for [x| — oo
V, = vi.v onTl(t)

with initial condition f(0) = fo
Properties:

» Moving boundary problem (with unknowns: f, v*, p*)
» Nonlinear (quasilinear) evolution problem

» The first 4 equations are linear PDEs for v and/or p with constant
coefficients
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The mathematical model

Literature

» Giinther & Prokert '97 (arbitrary space dimension): H-initial data
with k >34 241

» Solonnikov '99: C3*%initial data (in 3D)
Friedman & Reitich '02: Initial data in H5 (in 2D), resp. H® (in 3D)
» Priiss & Simonett '16 (arbitrary space dimension): Initial data

in W5+“_2/p, pe€(l,00),and 1 > p > %}

Remark:

v

» In these references the phase space is always embedded in C?

> If f = f(t,&) is a solution to the Stokes flow, then also
AL E) = AL, A>0
In 2D this identifies H3/2(R) as a critical space
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The mathematical model

Remarks

» Goal: Establish well-posedness in all subcritical spaces H*(R)
with s € (3/2,2)
» Given f € H*(R) with s € (3/2,2), the curvature operator

r
(1 + f/2)3/2

is not a function
» With respect to the term kv, an important observation in our analysis
is the following relation

f’2 £
wiv =g, g:=(g1,8) :=<—7 *)
b M w + wz? w b
where
wo VIt R

The term g is fully nonlinear!
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The main result

The main result

Theorem (M & Prokert '20, '21)

Let s € (3/2,2) be given. Then:

(i) (Well-posedness) Given fy € H*(R), there exists a unique maximal
solution (f,v*, p%) such that

o f=1f(;f) € C(0, Ty), H(R)) N CX([0, T), H*~H(R)),

o vE(t) € C3(QE(t)) N CHQE(L)), pt(t) € CHQE(t)) N C(QE(t)) for
allt € (0, T,),
o v(t)%|r) € HA(R)? forall t € (0, T,),
where T = T (fy) € (0,00] (+ continuous dependence on data).
(ii) (Parabolic smoothing)
(iia) The map [(t,€) — (t,€)]: (0, T4) x R — R is a C>°-function.
(iib) For any k € N, we have f € C>((0, T), H*(R)).

(i) T4(fo) = oo if for each T > 0 we have sup | (t)]| s < o0.
[O’T]Q[O’Tﬁ-(fb))

v
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The main result

» Use Hanzawa transform (or Lagrangian coordinates) to transform the
problem on a fixed (smooth) domain Q with boundary ©

» New unknowns: p and pulled back variables u := W7v and g := W7p
Drawbacks:
» The differential operators have coefficients depending on p: A + A(p)

» The solutions u and g of the transformed Stokes equations depend in
an intricate way on p
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The main result

Drawbacks:
» At the end the problem is formulated as a nonlinear and nonlocal
evolution equation J
P
P = F(p)
and F involves solution operators to p-dependent equations
» The solution operators are difficult to handle in unbounded geometries
(with asymptotic boundary conditions)
> In order to define the solution operators rather restrictive regularity
and smallness assumptions on p are needed
An alternative approach when considering the full-space problem:
» Use potential theory to determine v and p explicitly in terms of f via
an integral representation (Badea & Duchon '98)
> At the end the problem is formulated as a nonlinear and nonlocal
evolution equation (see also Muskat problem)

df
= F)

and F(f) is defined explicitly in terms of singular integral operators
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Solving the fixed time problem

Theorem (M & Prokert '20, '21)

Given f € H3(R), there exists a unique solution (v, p) to

pEAVE —Vpt = 0 in QF
divvt = 0 in QF
[v] = 0 onT
[Tu(v,p)lv = —okv onT
f¢) — 0 for || — oo
(vE, pF)(x) — 0 for |x| — oo

such that (ut — p~ vl € H2(R)?.

Remarks:
» The proof is technical (especially when pu™ # u™)
» v is determined in terms of an explicit contour integral
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The main result

Formal computations leading to v in the case u™ = = =:

Using Stokes’ formula it holds in D’(R?) that
,LLAV - Vp = —O‘HV(Sr = (Fl, F2)
Hence
v:Uk*Fk, p:Pk*Fk
where
U*, P*):R?\ {0} — R2 xR, k=12,

are the fundamental solutions to the Stokes equations in R?
[Ladyzhenskaya, '63]

Uk = ufuy)’,

1 1 Yy .
uk(y)__(5k|n+J ) J:1a27
! amp \ |y P
1y 2
P y)=—5-5 ¥ =(ny) € R*\ {0}
2m |yf?
Regensburg University Stokes flow in the plane

16 /28



The main result

Formal computations leading to v in the case u™ = = =:

Hence, we have for x € R2\ T
) = [ Ut xRy dy = o [[UHGx= ) ) T
_ _a/Ruk(x— (s, f(s))(c\ufgy;)(s) ds
0 /R D (U (x — (5. F(5))) gu(s) ds
and similarly
px) =~ | PH(x— (s F(9)h(s)

Plemel; type formulas enable us to compute the traces v|r in terms of
certain singular integrals operators By (introduced in [M'18, M'19])
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The main result

The abstract formulation in the case u© =~ =: pu

In view of V,, = vE|r - v, we arrive at

df
i F(f) = —f'vi|r + wolr
with
) (B&(f) - B8,(F)  B%() - B(F) > .
1r,velr) = —
4 \Bo(f) — BYo(f)  —3B2,(f) — BR,(f)

o (~B5al) = 3BL) BRal)—B8a() | 1,
au\ —BY,(F)+ BS,(F) —BS,(F)+BY,(F)) " ¢

with g = (g1, &) satisfies g’ = wrr and gj = gj(f'), j =1, 2

Though v has been identified under the assumption f € H3(R), the
operator F can be defined on H*(R) with s > 3/2
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The abstract formulation in the general u© — = € R

The Stokes flow can be reformulated as the following evolution equation

df 1 /
gt =T = = (= PR + 6(F)

with 8 = B(f) = (B1(f), B2(f)) " is the unique solution to

(1+2a,D(F))[8] = 2au(wr, valr) "

and

Ky — H—
a,=———¢(-1,1
e el

and

1 58,2(f) B?,z(f) f'61 1 B{J,z(f) Bg,z(f) b1
D(f)[/B] = - 0 0 / . 0 0

T \Bio(f) Bya(f)) \f'B2 T \Byo(f) B3o(f)) \ B2
is the double layer potential
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The main result

Remarks:
» In the case when i # u. we need to solve the equation

(1 +2a,D(M))[8] = 2a,(valr, valr) "

» The solution operator [f — (3(f)] induces additional nonlinearities and
nonlocalities

» We establish the invertibility of 1 4+ 2a,ID(f) by using underlying
Rellich formulas for the Stokes problem [Chang & Pahk, '09], but also
for the Muskat problem

» In both case we fix s € (3/2,2) and show that

o [f F(f)]: HS(R) — H*"1(R) is smooth
The Fréchet derivative 0F (fy) generates an analytic semigroup
in L(H*71(R)) for each fy € H5(R)

» These properties identify the Stokes flow as a parabolic evolution
problem [Lunardi, "95]

» The proofs of these two properties rely on the properties of the
operators BY
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The main result

The operators B,

Given Lipschitz continuous maps a, by, ..., b, : R — R and n, m € N and
we set

¢—s) II (Geabi/s)
S (14 Geaa/s)’)

where PV [ is the principal value integral and dj¢ qu := u(§) — u(§ — s)

Bn.m(a)[b1, - -, bn, h](€) := 71TPV/R h(

» If n=0and a=0, then B, »(0) = H is the Hilbert transform

» ais a nonlinear argument and by, ..., b, are additional linear
arguments

» Given f : R — R Lipschitz continuous we set

BR m(f) = Bam(F)[f,....f, ]

These are the operators that appear in the abstract formulations
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The main result

Estimates for the operators B,

» [M’ 18, M '19] There exists a constant C = C(n, m, ||a’||) such that

n
1Brm(@)[br, - bay -l qrary) < € [ 1B loo-
i=1
The proof uses a deep result from harmonic analysis [Murai '86]
» [Abels & M '21] There exists a constant C = C(s, n, m, ||a||ns),
where s € (3/2,2), such that

n
1Bam(8)[b1 - - bay Nl g1y < C [T lbill e
i=1
for all by,..., b, € H*(R)
» [M & Prokert '21]
[f = By m(f)] : H(R) — L(H*"*(R)) is smooth

» The smoothness of [f — F(f)] : H(R) — H*"1(R) is a consequence
of the latter property
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The generator property for OF (f)

» The first step is to compute the derivative OF (fy). The leading terms
of this operator are expressed again in terms of BJ ,(fo) since

B2 (R)[F1[h] = nBu2(f0)[f Fo, - fo, h] = 4Bur23(f0)IF o, ., fo. h]
and, since for s’ € (3/2,s) we have [Abels & M, '21]
1Ba,m()IF, fo, - fo, h] = hBR_y m(f0)[F Nl s < ClIAll s [|F]] o
it holds that
0B (f)[F1[] = h(nBY_1 5()[f'] — 48741 5(R)[F']) + Ralf, ],

where
| Ralf, Wl s < Cllhl[ s || £ o
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The generator property for OF (f)

» If fy =0, then OF(fy) = OF(0) is the Fourier multiplier

o d o d? \1/2
o7(0) 2(p4 + p-) e d¢ 2(p4 + p-) ( d€2)
and generates an analytic semigroup
» If fy # 0, then OF(fy) is no longer a Fourier multiplier, as it is
expressed by means of the singular integral operators B,‘lm(fo)
» 0F(fy) can be locally approximated by
d

d¢
(this generalizes of the method of “freezing the coefficients” of elliptic
differential operators)

» Using a strategy from [Escher 94, Escher & Simonett '95, '97] this
leads to the desired generator property

> The analysis is build up on localization results for BY (o)

Bogdan Matioc Regensburg University Stokes flow in the plane 24 /28

adF(0)+ 5 with constants « > 0 and f € R



The main result

Finite e-localization family and the localization of OF(f)

Finite e—localization family: {(7,&7) : =N +1<j <N} C C*(R) xR

2
- "TNL) TE )
P o)
BV AEENEY)'s'ay
- g
e TSl e £, eerp TEC fxowst

Lemma (Abels & M 21, M & Prokert '20)
Given 3/2 <s' <s<2andv >0, it holds for e € (0,1) sufficiently small

(f5(&5))"
: < vl|75 h| ys- o
| 7 Ry 1l s < P+ KBl
for all |j| < N —1 and h € H(R).

4
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The localization of OF(fy)

Theorem (M & Prokert 20, '21) J

Let v > 0 be given and fix 3/2 < s’ < s < 2. Then, there exist ¢ € (0,1),
a constant K = K(g), and constants

a; >0 and B; eR

such that

|

forall je {—N+1,...,N} and f € H*(R).

mOF(R)) — (o507(0) + 55 g ) w1, _, < vl llue + K1l
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The main result

Remarks on the proof of the main result

» The well-posedness and the criterion for global existence follow by
using the abstract parabolic theory from [Lunardi '95] (with a slight
improvement concerning uniqueness of solutions)

» The parabolic smoothing property uses the translation invariance of
the problem (via a parameter trick)
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The main result

[ M & Prokert, Two-phase Stokes flow by capillarity in full 2D space: an
approach via hydrodynamic potentials, Proc. Roy. Soc. Edinburgh
Sect. A, 2020, p. 1-31.

] M & Prokert, Two-phase Stokes flow by capillarity in the plane: The
case of different viscosities, arXiv:2102.12814.

Thank youl
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