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The mathematical model

The quasistationary Stokes �ow

Ω−(t)

Ω+(t)
Γ(t) = {x2 = f(t, x1)}

I 2D geometry, unbounded �uid domains

Ω±(t) := {(x1, x2) ∈ R2 : x2 ≷ f (t, x1)}

I Far away from the origin the �ow is almost stationary (and the
interface almost �at)

I µ± > 0 is the viscosity of the �uid ±
I σ > 0 is surface tension coe�cient at the moving boundary Γ(t)

I Gravity e�ects are neglected
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The mathematical model

The equations of motion

Incompressible Stokes equations

µ±∆v± −∇p± = 0

div v± = 0

 in Ω±(t)

Notation:

v± is velocity of the �uid ±

p± is the pressure of the �uid ±
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The mathematical model

Boundary conditions

Boundary condition on Γ(t):

[v ] = 0

[Tµ(v , p)]ν = −σκν

 in Γ(t)

where the stress tensor Tµ(v , p) is given by

Tµ(v , p) := −pI2 + µ(∇v + (∇v)>)

Given any function z : R2 \ Γ→ R we set z± := z |Ω± and

[z ](x) := lim
Ω+3y→x

z+ − lim
Ω−3y→x

z−, x ∈ Γ

Notation

κ = κ(t) is the curvature of Γ(t)

ν = ν(t) outer unit normal at ∂Ω−(t)
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The mathematical model

Boundary conditions

Far-�eld boundary conditions:
f (t, ξ) → 0 for |ξ| → ∞

(v±, p±)(x) → 0 for |x | → ∞

The normal velocity Vn of Γ(t) is given by

Vn = v± · ν on Γ(t)
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The mathematical model

We arrive at the following system

µ±∆v± −∇p± = 0 in Ω±(t)
div v± = 0 in Ω±(t)

[v ] = 0 on Γ(t)
[Tµ(v , p)]ν = −σκν on Γ(t)

f (ξ) → 0 for |ξ| → ∞
(v±, p±)(x) → 0 for |x | → ∞

Vn = v± · ν on Γ(t)


for t > 0

with initial condition f (0) = f0

Properties:

I Moving boundary problem (with unknowns: f , v±, p±)

I Nonlinear (quasilinear) evolution problem

I The �rst 4 equations are linear PDEs for v and/or p with constant
coe�cients
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The mathematical model

Literature

I Günther & Prokert '97 (arbitrary space dimension): Hk -initial data
with k ≥ 3 + n+1

2

I Solonnikov '99: C 3+α-initial data (in 3D)

I Friedman & Reitich '02: Initial data in H5 (in 2D), resp. H6 (in 3D)

I Prüss & Simonett '16 (arbitrary space dimension): Initial data

in W
2+µ−2/p
p , p ∈ (1,∞), and 1 ≥ µ > n+2

p

Remark:

I In these references the phase space is always embedded in C 2

I If f = f (t, ξ) is a solution to the Stokes �ow, then also

fλ(t, ξ) = λ−1f (λt, λξ), λ > 0

In 2D this identi�es H3/2(R) as a critical space
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The mathematical model

Remarks

I Goal: Establish well-posedness in all subcritical spaces Hs(R)
with s ∈ (3/2, 2)

I Given f ∈ Hs(R) with s ∈ (3/2, 2), the curvature operator

κ =
f ′′

(1 + f ′2)3/2

is not a function

I With respect to the term κν, an important observation in our analysis
is the following relation

ωκν = g ′, g := (g1, g2) :=
(
− f ′2

ω + ω2
,
f ′

ω

)
,

where
ω =

√
1 + f ′2

The term g is fully nonlinear!
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The main result

The main result

Theorem (M & Prokert '20, '21)

Let s ∈ (3/2, 2) be given. Then:

(i) (Well-posedness) Given f0 ∈ Hs(R), there exists a unique maximal
solution (f , v±, p±) such that

• f = f (·; f0) ∈ C([0,T+),Hs(R)) ∩ C1([0,T+),Hs−1(R)),

• v±(t) ∈ C2(Ω±(t)) ∩ C1(Ω±(t)), p±(t) ∈ C1(Ω±(t)) ∩ C(Ω±(t)) for

all t ∈ (0,T+),

• v(t)±|Γ(t) ∈ H2(R)2 for all t ∈ (0,T+),

where T+ = T+(f0) ∈ (0,∞] (+ continuous dependence on data).

(ii) (Parabolic smoothing)

(iia) The map [(t, ξ) 7→ f (t, ξ)] : (0,T+)× R −→ R is a C∞-function.

(iib) For any k ∈ N, we have f ∈ C∞((0,T+),Hk(R)).

(iii) T+(f0) =∞ if for each T > 0 we have sup
[0,T ]∩[0,T+(f0))

‖f (t)‖Hs <∞.
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The main result

Ω(t)

Γ(t) = Γρ(t)

Ψρ(t) Ω

Σ

nn

ρ(t, x)
x·

I Use Hanzawa transform (or Lagrangian coordinates) to transform the
problem on a �xed (smooth) domain Ω with boundary Σ

I New unknowns: ρ and pulled back variables u := Ψ∗ρv and q := Ψ∗ρp

Drawbacks:

I The di�erential operators have coe�cients depending on ρ: ∆↔ A(ρ)

I The solutions u and q of the transformed Stokes equations depend in
an intricate way on ρ
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The main result

Drawbacks:

I At the end the problem is formulated as a nonlinear and nonlocal
evolution equation

dρ

dt
= F(ρ)

and F involves solution operators to ρ-dependent equations
I The solution operators are di�cult to handle in unbounded geometries

(with asymptotic boundary conditions)
I In order to de�ne the solution operators rather restrictive regularity

and smallness assumptions on ρ are needed

An alternative approach when considering the full-space problem:

I Use potential theory to determine v and p explicitly in terms of f via
an integral representation (Badea & Duchon '98)

I At the end the problem is formulated as a nonlinear and nonlocal
evolution equation (see also Muskat problem)

df

dt
= F(f )

and F(f ) is de�ned explicitly in terms of singular integral operators
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The main result

Solving the �xed time problem

Theorem (M & Prokert '20, '21)

Given f ∈ H3(R), there exists a unique solution (v , p) to

µ±∆v± −∇p± = 0 in Ω±

div v± = 0 in Ω±

[v ] = 0 on Γ
[Tµ(v , p)]ν = −σκν on Γ

f (ξ) → 0 for |ξ| → ∞
(v±, p±)(x) → 0 for |x | → ∞


such that (µ+ − µ−)v±|Γ ∈ H2(R)2.

Remarks:

I The proof is technical (especially when µ+ 6= µ−)

I v is determined in terms of an explicit contour integral
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The main result

Formal computations leading to v in the case µ+ = µ− =: µ

Using Stokes' formula it holds in D′(R2) that

µ∆v −∇p = −σκνδΓ =: (F1,F2)

Hence
v = Uk ∗ Fk , p = Pk ∗ Fk

where
(Uk ,Pk) : R2 \ {0} −→ R2 × R, k = 1, 2,

are the fundamental solutions to the Stokes equations in R2

[Ladyzhenskaya, '63]

Uk = (Uk
1 ,Uk

2 )>,

Uk
j (y) = − 1

4πµ

(
δjk ln

1

|y | +
yjyk
|y |2

)
, j = 1, 2,

Pk(y) = − 1

2π

yk
|y |2 , y = (y1, y2) ∈ R2 \ {0}
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The main result

Formal computations leading to v in the case µ+ = µ− =: µ

Hence, we have for x ∈ R2 \ Γ

v(x) =

∫
R2

Uk(x − y)Fk(y) dy = −σ
∫

Γ
Uk(x − y)(κνk)(y) dΓ

= −σ
∫
R
Uk(x − (s, f (s))(ωκνk︸ ︷︷ ︸

=g ′k

)(s) ds

= σ

∫
R
∂s
(
Uk(x − (s, f (s))

)
gk(s) ds

and similarly

p(x) = −σ
∫
R
Pk(x − (s, f (s))g ′k(s) ds

Plemelj type formulas enable us to compute the traces v±|Γ in terms of
certain singular integrals operators B0

n,m (introduced in [M'18, M'19])
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The main result

The abstract formulation in the case µ+ = µ− =: µ

In view of Vn = v±|Γ · ν, we arrive at

df

dt
= F(f ) := −f ′v1|Γ + v2|Γ

with

(v1|Γ, v2|Γ)> =
σ

4µ

(
B0

2,2(f )− B0

0,2(f ) B0

3,2(f )− B0

1,2(f )

B0

3,2(f )− B0

1,2(f ) −3B0

2,2(f )− B0

0,2(f )

)
[g ]

+
σ

4µ

(
−B0

3,2(f )− 3B0

1,2(f ) B0

2,2(f )− B0

0,2(f )

−B0

2,2(f ) + B0

0,2(f ) −B0

3,2(f ) + B0

1,2(f )

)
[f ′g ]

with g = (g1, g2) satis�es g ′ = ωκν and gj = gj(f
′), j = 1, 2

Though v has been identi�ed under the assumption f ∈ H3(R), the
operator F can be de�ned on Hs(R) with s > 3/2
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The main result

The abstract formulation in the general µ+ − µ− ∈ R
The Stokes �ow can be reformulated as the following evolution equation

df

dt
= F(f ) := − 1

µ+ − µ−
(
− f ′β1(f ) + β2(f ))

with β = β(f ) = (β1(f ), β2(f ))> is the unique solution to(
1 + 2aµD(f ))[β] = 2aµ(v1|Γ, v2|Γ)>

and

aµ =
µ+ − µ−
µ+ + µ−

∈ (−1, 1)

and

D(f )[β] =
1

π

(
B0

0,2(f ) B0

1,2(f )

B0

1,2(f ) B0

2,2(f )

)(
f ′β1

f ′β2

)
− 1

π

(
B0

1,2(f ) B0

2,2(f )

B0

2,2(f ) B0

3,2(f )

)(
β1

β2

)
is the double layer potential
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The main result

Remarks:

I In the case when µ− 6= µ+ we need to solve the equation(
1 + 2aµD(f ))[β] = 2aµ(v1|Γ, v2|Γ)>

I The solution operator [f 7→ β(f )] induces additional nonlinearities and
nonlocalities

I We establish the invertibility of 1 + 2aµD(f ) by using underlying
Rellich formulas for the Stokes problem [Chang & Pahk, '09], but also
for the Muskat problem

I In both case we �x s ∈ (3/2, 2) and show that

• [f 7→ F(f )] : Hs(R)→ Hs−1(R) is smooth

• The Fréchet derivative ∂F(f0) generates an analytic semigroup
in L(Hs−1(R)) for each f0 ∈ Hs(R)

I These properties identify the Stokes �ow as a parabolic evolution
problem [Lunardi, '95]

I The proofs of these two properties rely on the properties of the
operators B0

n,m
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The main result

The operators B0
n,m

Given Lipschitz continuous maps a, b1, . . . , bn : R→ R and n, m ∈ N and
we set

Bn,m(a)[b1, . . . , bn, h](ξ) :=
1

π
PV

∫
R

h(ξ − s)

s

∏n
i=1

(
δ[ξ,s]bi/s

)(
1 +

(
δ[ξ,s]a/s

)2)m ds,

where PV
∫
R is the principal value integral and δ[ξ,s]u := u(ξ)− u(ξ − s)

I If n = 0 and a = 0, then Bn,m(0) = H is the Hilbert transform

I a is a nonlinear argument and b1, . . . , bn are additional linear
arguments

I Given f : R→ R Lipschitz continuous we set

B0

n,m(f ) = Bn,m(f )[f , . . . , f , ·]

These are the operators that appear in the abstract formulations
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The main result

Estimates for the operators Bn,m

I [M' 18, M '19] There exists a constant C = C (n,m, ‖a′‖∞) such that

‖Bn,m(a)[b1, . . . , bn, · ]‖L(L2(R)) ≤ C
n∏

i=1

‖b′i‖∞.

The proof uses a deep result from harmonic analysis [Murai '86]
I [Abels & M '21] There exists a constant C = C (s, n,m, ‖a‖Hs ),

where s ∈ (3/2, 2), such that

‖Bn,m(a)[b1, . . . , bn, · ]‖L(Hs−1(R)) ≤ C
n∏

i=1

‖bi‖Hs

for all b1, . . . , bn ∈ Hs(R)
I [M & Prokert '21]

[f 7→ B0

n,m(f )] : Hs(R)→ L(Hs−1(R)) is smooth

I The smoothness of [f 7→ F(f )] : Hs(R)→ Hs−1(R) is a consequence
of the latter property
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The main result

The generator property for ∂F(f0)

I The �rst step is to compute the derivative ∂F(f0). The leading terms
of this operator are expressed again in terms of B0

n,m(f0) since

∂B0

n,2(f0)[f ][h] = nBn,2(f0)[f , f0, . . . f0, h]− 4Bn+2,3(f0)[f , f0, . . . , f0, h]

and, since for s ′ ∈ (3/2, s) we have [Abels & M, '21]

‖Bn,m(f0)[f , f0, . . . f0, h]− hB0

n−1,m(f0)[f ′]‖Hs−1 ≤ C‖h‖Hs−1‖f ‖Hs′ ,

it holds that

∂B0

n,2(f0)[f ][h] = h
(
nB0

n−1,2(f0)[f ′]− 4B0

n+1,3(f0)[f ′]
)

+ Rn[f , h],

where
‖Rn[f , h]‖Hs−1 ≤ C‖h‖Hs−1‖f ‖Hs′
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The main result

The generator property for ∂F(f0)
I If f0 = 0, then ∂F(f0) = ∂F(0) is the Fourier multiplier

∂F(0) = − σ

2(µ+ + µ−)
H ◦ d

dξ
= − σ

2(µ+ + µ−)

(
− d2

dξ2

)1/2
and generates an analytic semigroup

I If f0 6= 0, then ∂F(f0) is no longer a Fourier multiplier, as it is
expressed by means of the singular integral operators B0

n,m(f0)

I ∂F(f0) can be locally approximated by

α∂F(0) + β
d

dξ
, with constants α > 0 and β ∈ R

(this generalizes of the method of �freezing the coe�cients� of elliptic
di�erential operators)

I Using a strategy from [Escher '94, Escher & Simonett '95, '97] this
leads to the desired generator property

I The analysis is build up on localization results for B0
n,m(f0)
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The main result

Finite ε-localization family and the localization of ∂F(f0)
Finite ε−localization family: {(πεj , ξεj ) : −N + 1 ≤ j ≤ N} ⊂ C∞(R)× R

Lemma (Abels & M '21, M & Prokert '20)

Given 3/2 < s ′ < s < 2 and ν > 0, it holds for ε ∈ (0, 1) su�ciently small∥∥∥πεj B0

n,m(f0)[h]−
(f ′
0
(ξεj ))n

[1 + (f ′
0
(ξεj ))2]m

H[πεj h]
∥∥∥
Hs−1

≤ ν‖πεj h‖Hs−1 + K‖h‖Hs′−1

for all |j | ≤ N − 1 and h ∈ Hs−1(R).
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The main result

The localization of ∂F(f0)

Theorem (M & Prokert '20, '21)

Let ν > 0 be given and �x 3/2 < s ′ < s < 2. Then, there exist ε ∈ (0, 1),
a constant K = K (ε), and constants

αεj > 0 and βεj ∈ R

such that∥∥∥πεj ∂F(f0)[f ]−
(
αεj ∂F(0) + βεj

d

dξ

)
[πεj f ]

∥∥∥
Hs−1

≤ ν‖πεj f ‖Hs + K‖f ‖Hs′

for all j ∈ {−N + 1, . . . ,N} and f ∈ Hs(R).
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The main result

Remarks on the proof of the main result

I The well-posedness and the criterion for global existence follow by
using the abstract parabolic theory from [Lunardi '95] (with a slight
improvement concerning uniqueness of solutions)

I The parabolic smoothing property uses the translation invariance of
the problem (via a parameter trick)
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The main result

M & Prokert, Two-phase Stokes �ow by capillarity in full 2D space: an

approach via hydrodynamic potentials, Proc. Roy. Soc. Edinburgh
Sect. A, 2020, p. 1-31.

M & Prokert, Two-phase Stokes �ow by capillarity in the plane: The

case of di�erent viscosities, arXiv:2102.12814.

Thank you!
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