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Stochastic Navier-Stokes equations for turbulent flows

Stochastic Lagrangian approach
Reynolds 1880:

Velocity field = u︸︷︷︸
Slow oscillating part

(deterministic)

+ ϕβ̇︸︷︷︸
Fast oscillating part

(random)

Kraichnan’s turbulence theory (1968)
1 Statistic modeling: ϕ ∈ Hη,ξ for some η > d/ξ and ξ ∈ [2,∞);
2 Newton’s law yields

du −∆u dt =
(
−∇P − (u · ∇)u

)
dt +

∑
n≥1 (ϕn · ∇)u︸ ︷︷ ︸

Stochastic
transport

dβn
t . (1)

Eq. (1) is called Navier-Stokes equations for turbulent flows.

Image source: https://en.wikipedia.org/wiki/Turbulence
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Transport noise as a model for small-scales

Separation of scales
Suppose that u = uL + uS where L stands for “Large" and S for “Small" scale and

∂tuL −∆uL = −∇PL − ((uL + uS) · ∇)uL,

∂tuS −∆uS = −∇PS − ((uL + uS) · ∇)uS .

Then the sum u = uL + uS solves the Navier-Stokes equations.

Turbulent regime
In a turbulent regime one can model uS as an approximation of white noise, so that

uS =
∑
n≥1

ϕnβ̇
n
t .

Thus the large scale component uL solves

duL −∆uL dt =
(
−∇PL − (uL · ∇)uL

)
dt +

∑
n≥1

(ϕn · ∇)uLdβn
t .
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Transport noise preserves scaling

Solutions to the Navier-Stokes equations are invariant under the scaling

u(t , x) 7→ uλ(t , x)
def
= λ1/2u(λt , λ1/2x) where λ > 0. (2)

Scaling and transport noise

Let λ > 0. Consider the following scaled noise βn
t,λ

def
= λ−1/2βn

λt .

Then the stochastic integral∫ t/λ

0
(ϕn · ∇)uλ(s, x) dβn

s,λ = λ1/2
∫ t

0
(ϕn · ∇)u(s, λ1/2x) dβn

s

has the same scaling of∫ t/λ

0
(uλ(s, x) · ∇)uλ(s, x) ds = λ1/2

∫ t

0
(u(s, λ1/2x) · ∇)u(s, λ1/2x) ds.

Stochastic transport perturbation of the NS equations preserves its natural scaling!
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Hydrostatic approximation and primitive equations I

The primitive equations are used to study fluid flows in case the vertical scale is much
smaller than the horizontal one (e.g. in the ocean the vertical scale is ∼ 11 km while
the horizontal is ∼ 103–104 km).

Anisotropic behavior

For ε > 0 let Oε = T2 × (−ε, 0). Consider the following anisotropic stochastic
Navier-Stokes equations on Oε:

du −
(
∆Hu + ε2∂2

3u
)
dt =

[
−∇P + (u · ∇)u

]
dt

+
∑
n≥1

[
(ϕn,H · ∇H)u + εϕ3

n∂3u
]

dβn
t

(3)

here H stands for horizontal component, i.e. ∆H = ∂2
1 + ∂2

2 , ∇H = (∂1, ∂2) and
ϕn,H = (ϕ1

n, ϕ
2
n) for ϕn = (ϕ1

n, ϕ
2
n, ϕ

3
n).

The primitive equations are the limit of (3) as ε ↓ 0.
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Hydrostatic approximation and primitive equations II

Decompose u = (v ,w) where v : R+ × Ω×Oε → R2, and w : R+ × Ω×Oε → R.

The following rescaling yields unknown on O def
= O1 = T2 × (−1, 0):

Pε(xH, x3) = P(xH, εx3), vε(xH, x3) = v(xH, εx3), wε(xH, x3) = ε−1w(xH, εx3).

Thus vε,wε satisfy

dvε =
[
∆vε −∇Pε + (uε · ∇)vε

]
dt +

∑
n≥1

(ϕn · ∇)vε dβn
t ,

����d(ε2wε) =
[
(((((((((
ε2(∆wε − (uε · ∇)wε

)
− ∂3Pε

]
dt +

∑
n≥1

������
ε2(ϕn · ∇)wε dβn

t . (4)

Hydrostatic approximation
The formal limit as ε ↓ 0 in (4) yields the Hydrostatic approximation by replacing (4) by

∂3Pε = 0 =⇒ Pε(xH, x3) = pε(xH).

The unknown pε is usually called surface pressure.
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Furukawa, Giga, Hieber, Hussein, Kashiwabara, & Wrona (’20). Rigorous justification of the hydrostatic
approximation for the primitive equations by scaled Navier–Stokes equations. Nonlinearity, 33(12), 6502.
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Differences between Navier-Stokes and Primitive equations

Navier-Stokes Primitive equations
Evolution equation for w Constraint for the pressure
Constraint for the velocity "‘evolution"’ equation for w
All directions are equivalent Anisotropic behavior
Full pressure p(x , y , z) Surface pressure p(x , y)
divu = 0 (full divergence) divHv = 0 (horizontally divergence)
None of the velocity direction can be
substituted

Vertical velocity is known, w(·, z) =
−divH

∫ z
−h v(·, ξ)dξ
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The stochastic primitive equations

Primitive equations

The hydrostatic approximation yields the following system on O = T2 × (−1, 0):

dv =
[
∆v − ∇Hp︸ ︷︷ ︸

Surface
pressure

−(v · ∇H)v − w∂3v
]

dt +
∑
n≥1

(ϕn · ∇)v︸ ︷︷ ︸
Stochastic
transport

dβn
t ,

divHv + ∂3w = 0.

The unknown is v !

Boundary conditions: For xH ∈ T2,

w(xH,−1) = w(xH, 0) = 0. (5)

1 w is uniquely determine by: w = w(v) def
= −

∫ x3

−1
divHv(·, ζ) dζ;

2 v satisfies the “divergence free" condition:
∫ 0

−1
divHv(xH, ζ) dζ = 0;

3 The divergence free condition uniquely determines p (up to a constant).
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Boundary conditions: For xH ∈ T2,

w(xH,−1) = w(xH, 0) = 0. (5)

1 w is uniquely determine by: w = w(v) def
= −

∫ x3

−1
divHv(·, ζ) dζ;

2 v satisfies the “divergence free" condition:
∫ 0

−1
divHv(xH, ζ) dζ = 0;

3 The divergence free condition uniquely determines p (up to a constant).
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Reformulation of the primitive equations

Hydrostatic Helmholtz projection

For f ∈ L2(O;R2), let Ψf ∈ H1(T2) be such that

∆HΨf = divH
[ ∫ 0

−1
f (·, ζ) dζ

]
and

∫
T2

Ψf dxH = 0.

The Hydrostatic Helmholtz projection P is given by Pf def
= f −∇HΨf .

Reformulation

We are looking for a process v : R+ × Ω×O → R2 such that v(0) = v0 and

dv =
[
∆v − P[(v · ∇H)v − w(v)∂3v ]

]
dt +

∑
n≥1

P[(ϕn · ∇)v ] dβn
t ,

where w(v) = −
∫ x3

−1
divHv(·, ζ) dζ and satisfying

∂3v(·,−1) = ∂3v(·, 0) = 0 on T2.
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The Hydrostatic Helmholtz projection P is given by Pf def
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P is an orthogonal projection on L2(O;R2) (and also bounded on H1(O;R2));

∫ 0

−1
(divHPf )(·, ζ) dζ = 0 (“divergence free" of Pf );

Orthogonality property: P[∇Hp] = 0 for all p ∈ H1(T2).
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Local and global existence for primitive equations

Theorem – Agresti, Hieber, Hussein and S ’21

Let v0 ∈ H1(O;R2) be such that
∫ 0
−1 divHv0(·, ζ) dζ = 0 a.s. Under suitable

assumptions on (ϕn)n≥1, there exists a unique local and maximal solution

v ∈ L2
loc([0, τ);H

2(O;R2)) ∩ C([0, τ);H1(O;R2)), τ > 0 a.s.

to 
dv = P[∆v − (v · ∇H)v − w(v)∂3v ] dt +

∑
n≥1

P[(ϕn · ∇)v ] dβn
t , on O,

v(0) = v0, ∂3v(·,−1) = ∂3v(·, 0) = 0, on T2.

If ϕ1
n, ϕ

2
n are independent of x3 (ϕn = (ϕj

n)
3
j=1), then v solution is global, i.e. τ = ∞ a.s.

1 Deterministic case: Cao and Titi (’07) and Kobelkov (’07);
2 Stochastic case: Brzeźniak & Slavík (’21).

The stochastic primitive equations with transport noise and turbulent pressure. arXiv preprint,
arXiv:2109.09561.
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Some comments

1 Regularity of ϕn = (ϕj
n)n≥1. For j ∈ {1, 2, 3} and some δ > 0

(ϕj
n)n≥1 ∈ H1,3+δ(O; ℓ2);

2 Since H
d
2 +η,2 ↪→ H1,3+δ, it fits the application to Kraichnan’s theory!

3 The turbulent pressure is the “random" component of the pressure and arises from

P[(ϕn · ∇)v ] = (ϕn · ∇)v − ∇p̃n︸︷︷︸
Turbulent
pressure

;

4 Physical relevant noise. Stratonovich noise leads to variable viscosity:

∆v ⇝ div(aϕ · ∇v), where ai,j
ϕ

def
= δi,j +

1
2

∑
n≥1

ϕi
nϕ

j .
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Strategy of the proof

The proof splits into three parts:

1 Local existence and pathwise regularity;

2 Blow-up criterium for maximal solutions;

3 Global existence by combining energy estimates and blow-up criteria.

3 Assume that the following energy estimate holds: For T > 0

E
[

sup
t∈[0,τ)

∥v(t)∥2
H1

]
+ E

∫ τ

0
∥v(t)∥2

H2 dt ≤ CT (1 + E∥v0∥2
H1)

Then the global existence follows:

• P(τ < T )
Energy

estimate= P
(
τ < T , sup

t∈[0,τ)
∥v(t)∥H1 +

∫ τ

0
∥v(t)∥2

H2 dt < ∞
) Blow-up

criterium= 0;

• Hence P(τ < ∞) = 0, i.e. τ = ∞ a.s.
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Strategy of the proof

The proof splits into three parts:

1 Local existence and pathwise regularity;

2 Blow-up criterium for maximal solutions;

3 Global existence by combining energy estimates and blow-up criteria.

1 Use linearization and fixed point argument. 1 The linearization reads as follows:
dv = (∆v + f ) dt +

∑
n≥1

(
P[(ϕn · ∇)v ] + gn

)
dβn

t , on O,

v(0) = 0, ∂3v(·,−1) = ∂3v(·, 0) = 0 on T2.

The transport term P[(ϕn · ∇)v ] is not lower order compared to ∆!

The semigroup approach is not (directly) applicable;

The estimate we need is typically called stochastic maximal Lp-regularity.

1Agresti & Veraar (’20). Nonlinear parabolic stochastic evolution equations in critical spaces Part I.
Stochastic maximal regularity and local existence. To appear in Nonlinearity.
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Strategy of the proof

The proof splits into three parts:

1 Local existence and pathwise regularity;

2 Blow-up criterium for maximal solutions;

3 Global existence by combining energy estimates and blow-up criteria.

2 Gluing together local solutions one obtains a maximal local solution up to time τ .
Arguing by contradiction one gets1

P
(
τ < T , sup

t∈[0,τ)
∥v(t)∥2

H1 +

∫ τ

0
∥v(t)∥2

H2 dt < ∞
)
= 0, T ∈ (0,∞).

1Agresti & Veraar (’20). Nonlinear parabolic stochastic evolution equations in critical spaces Part II. Blow-up
criteria and instantaneous regularization. To appear in Journal of Evolution Equations.
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Regularity estimates for the hydrostatic Stokes system

Stochastic maximal L2-regularity

Let T ∈ (0,∞). Under suitable assumption, for each

f ∈ L2((0,T )× Ω;L2), and g = (gn)n≥1 ∈ L2((0,T )× Ω;H1(ℓ2))

the unique solution v to
dv = (∆v + f ) dt +

∑
n≥1

(
P[(ϕn · ∇)v ] + gn

)
dβn

t , on O,

v(0) = 0, ∂3v(·,−1) = ∂3v(·, 0) = 0 on T2.

satisfies
∥v∥L2((0,T )×Ω;H2) ≲ ∥f∥L2((0,T )×Ω;L2) + ∥g∥L2((0,T )×Ω;H1(ℓ2)).

Here O = T2 × (−1, 0),

L2 def
= P(L2(O;R2)) and H1(ℓ2) = H1(O; ℓ2(N;R2)) ∩ L2(O; ℓ2(N;R2)).
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Sketch of the proof

1 Method of continuity. For λ ∈ [0, 1] consider
dv = (∆v + f ) dt +

∑
n≥1

(
λP[(ϕn · ∇)v ] + gn

)
dβn

t , on O,

v(0) = 0, ∂3v(·,−1) = ∂3v(·, 0) = 0 on T2.

and prove the a-priori estimate with C independent of λ

∥v∥L2((0,T )×Ω;H2) ≤ C
(
∥f∥L2((0,T )×Ω;L2) + ∥g∥L2((0,T )×Ω;H1(ℓ2))

)
.

2 Apply the Itô’s formula to v 7→ ∥∇v∥2
L2 . Integrating by parts, on the LHS one has

2E
∫ T

0

∫
O
|∆v |2 dxds and on the RHS

3∑
k=1

E
∫ T

0
∥λP[(ϕn · ∇)∂k v ]∥2

L2 ds ≤
3∑

k=1

∑
n≥1

E
∫
O

∣∣∣ 3∑
j=1

ϕj
n∂

2
j,k v

∣∣∣2 dxds

(Parabolicity) ≤ ν

3∑
j,k=1

E
∫ T

0

∫
O
|∂2

j,k v |2 dxds

(Kadlec’s formula) ≤ ν′E
∫ T

0

∫
O
|∆v |2 dxds + cν,ν′E

∫ T

0

∫
O
|v |2 dxds

where ν′ ∈ (ν, 2) and parabolicity means
∑

n≥1

(∑3
j=1 ϕ

j
nξj

)2 ≤ ν|ξ|2 for some
ν ∈ (0, 2).
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Energy estimate

In addition to the assumptions of the local existence, suppose ϕ1
n, ϕ

2
n are independent

of x3. Then for each T ∈ (0,∞) there exist stopping times (µk )k≥1 such that

lim
k→∞

P(µk = τ ∧ T ) = 1, E
[

sup
t∈[0,µk )

∥v(t)∥H1

]
+ E

∫ µk

0
∥v(s)∥2

H1 ds ≲k,T 1 + E∥v0∥2
H1 .

Key observation: Split v = v + ṽ where v def
=

∫ 0

−1
v(·, ζ) dζ, and ṽ def

= v − v . Moreover

v and ṽ solves a 2D Navier-Stokes equations and 3D heat equation, respectively.

Advantage of the 3D Primitive equations w.r.t. to Navier-Stokes ones

Since p is x3-independent, it does not appear in the equation for ṽ ;

L4-estimates for ṽ are available due to:
∫
O
|ṽ |2ṽ · [(u · ∇)ṽ ] dx = 0;

Estimates for ∥∂3v∥2
L2 and ∥∇∂3v∥2

L2 are available since p is x3-independent;

Estimates for ∥v∥2
H1 and ∥v∥2

H1 are available in terms of L4-norms of ṽ .
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=

∫ 0

−1
v(·, ζ) dζ, and ṽ def
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Estimates for ∥∂3v∥2
L2 and ∥∇∂3v∥2

L2 are available since p is x3-independent;

Estimates for ∥v∥2
H1 and ∥v∥2

H1 are available in terms of L4-norms of ṽ .
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Estimates for ∥∂3v∥2
L2 and ∥∇∂3v∥2

L2 are available since p is x3-independent;

Estimates for ∥v∥2
H1 and ∥v∥2

H1 are available in terms of L4-norms of ṽ .
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1 Motivation

2 Stochastic primitive equations with transport noise and turbulent pressure

3 Stratonovich noise for the primitive equations
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Stratonovich noise

There are different ways to define the stochastic integral:

Itô-integral ∫ t

0
g(s)dβ = lim

n→∞

n∑
i=1

g(si−1)(βsi − βsi−1)

Advantage: Itô-isometry, E
[(∫ t

0 g(s)dβ
)2

]
= E

[∫ t
0 g(s)2ds

]
.

Stratonovich-integral∫ t

0
g(s)dβ = lim

n→∞

n∑
i=1

g(si)− g(si−1)

2
(βsi − βsi−1)

Advantage: Calculus similar to deterministic one.
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Itôto Stratonovich

1 The two integrals differ by a correction term:

P[(ϕn · ∇)v ] ◦dβn
t︸ ︷︷ ︸

Stratonovich
noise

= P[(ϕn · ∇)v ] dβn
t︸︷︷︸

Itô
noise

+
1
2
P
[
(ϕn · ∇)

(
P[(ϕn · ∇)v ]

)]
dt︸ ︷︷ ︸

Correction term

.
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Itôto Stratonovich

1 The two integrals differ by a correction term:

P[(ϕn · ∇)v ] ◦ dβn
t = P[(ϕn · ∇)v ] dβn

t +
1
2
P
[
(ϕn · ∇)

(
P[(ϕn · ∇)v ]

)]
dt .

2 Formally2, one has by rewriting the correction term

P[(ϕn · ∇)v ] ◦ dβn
t = P[(ϕn · ∇)v ] dβn

t + P
[
Lϕv + Pϕv

]
dt ,

where

Lϕv := ∆v︸︷︷︸
disspation
by noise

+
1
2

3∑
i,j=1

ϕi
n(x)ϕ

j
n(x)∂

2
i,jv︸ ︷︷ ︸

variabel disspation

+
1
2

3∑
i,j=1

∑
n≥1

(∂iϕ
j
n)ϕ

i
n∂jv

and Pϕ is a lower order term.

2see Flandoli (’21). Stochastic Partial Differential Equations in Fluid Mechanics 2021.
https://www.waseda.jp/inst/sgu/news-en/2021/03/08/8586/.
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Open problems

1 Is the assumption ϕ1
n, ϕ

2
n independent of x3 necessary for global existence?

2 The stochastic primitive equation with physical boundary conditions:

∂3v(·, 0) = 0 on T2 and v(·,−1) = 0 on T2;

3 Influence of the temperature:

∂3P + κ0θ = 0 on O, and ∂3P̃n + κnθ = 0 on O;

4 Regularization and Lp(Lq)-theory for the stochastic primitive equations with

v0 ∈ B2/q
q,p (O;R2), for suitable 2 ≤ q, p < ∞;

5 Regularization by (transport) noise.
6 Rigorous justification of our model for the stochastic primitive equation.

Thank you for your attention!
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Thank you for your attention!

3Giga, Gries, Hieber, Hussein & Kashiwabara (’20). Analyticity of solutions to the primitive equations.
Mathematische Nachrichten, 293(2), 284-304.
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Thank you for your attention!

4Flandoli & Luo (’21). High mode transport noise improves vorticity blow-up control in 3D Navier–Stokes
equations. Probability Theory and Related Fields, 180(1), 309-363.
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