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An example: mean curvature flow

The mean curvature flow is described by the equation V = −H. Here V is the
velocity of the surface in normal direction, and H is the mean curvature.

One aim of parabolic theory is to show (local) well-posedness of the equation:

Theorem (what we want to show)

For every initial surface, the mean curvature equation has a unique solution with
maximal existence interval. The solution is infinitely smooth in time and space.
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An example: mean curvature flow

In local coordinates, the mean curvature flow is given by

∂tu −∆u = −
n∑

i=1

∂iu∂ju

1 + |∇u|2
∂i∂ju (t ∈ (0,T )),

u(0) = u0

(1)

with T ∈ (0,∞). Here ∂i = ∂
∂xi

, and ∆ := ∂2
1 + · · ·+ ∂2

n is the Laplace operator.

Equation (2) is an example of a quasilinear parabolic partial differential equation.

General form:

∂tu − Au = G (u),

u(0) = u0.

Here A is a linear operator (e.g., differential operator in space) and G is a
nonlinear operator with G (0) = G ′(0) = 0.
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Linearization

We want to solve the quasilinear equation

∂tu − Au = G (u),

u(0) = u0.

For this, we linearize the equation. So consider for fixed v the linear equation

∂tu − Au = G (v) (t ∈ (0,T )),

u(0) = u0.

Idea of maximal regularity:

If the solution of the linear problem is smooth enough, we can apply Banach’s
fixed point theorem (contraction mapping principle) to get a unique local solution
of the nonlinear problem.
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Maximal regularity
The linearized problem has the form

∂tu − Au = f (t ∈ (0,T )),

u(0) = u0

(2)

with f := G (v).

Function spaces:

We are looking for spaces

u ∈ E, f ∈ F, u0 ∈ γtE

such that
u 7→ (f , u0), E→ F× γtE

is an isomorphism. Typical choices are:

Hölder spaces Cα,

Lp-Sobolev spaces.
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Maximal Lp-regularity

Let X be a complex Banach space and A : X ⊃ D(A)→ X be a closed operator.
We consider the abstract Cauchy problem

∂tu − Au = f (t > 0),

u(0) = u0.

In the Lp-setting, the natural space for f is

f ∈ F := Lp((0,T );X ).

For maximal regularity we want to have ∂tu ∈ F and Au ∈ F, so the natural space
for u is

u ∈ E := W 1
p ((0,T );X ) ∩ Lp((0,T );D(A)).

Here, D(A) is endowed with the graph norm ‖ · ‖A.
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Function spaces

The Cauchy problem has the form

∂tu − Au = f (t > 0),

u(0) = u0.

Let γt : u 7→ u|t=0 be the time trace. The natural trace space is given by

γtE :=
{
u0 ∈ X : ∃ u ∈ E : γtu = u0

}
with norm

‖u0‖γtE := inf
{
‖u‖E : u ∈ E, γtu = u0

}
.

Remark: If D(A) = W k
p (Rn), we know that γtE = B

k−k/p
pp (Rn).
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Maximal Lp-regularity
Let X be a Banach space and A : X ⊃ D(A)→ X be a closed operator. Let
p ∈ (1,∞) and T ∈ (0,∞).

Definition

The operator A has maximal Lp-regularity in (0,T ) if(
∂t − A
γt

)
: E→ F× γtE, u 7→

(
f

u0

)
:=

(
∂tu − Au

u|t=0

)
is an isomorphism.

In this case we have a continuous solution operator

S =

(
∂t − A
γt

)−1

: (f , u0) 7→ u,

i.e., u = S(f , u0) is the unique solution of

∂tu − Au = f (t > 0),

u|t=0 = u0.
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Remarks on maximal regularity

To show maximal regularity, we may assume u0 = 0.

The nonlinear problem

∂tu + Au = G (u) (t ∈ (0,T )),

γtu = u0

is equivalent to the fixed-point equation

u = S(G (u), u0).
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Maximal regularity

The linearization approach gives:

Theorem
If A has maximal regularity and if

u 7→ S(G (u), u0)

is a contraction then the nonlinear equation has a unique maximal solution, i.e. a
unique solution (in Lp-sense) defined on the maximal interval of existence.

To obtain a contraction, in application we usually have

a condition on p to control the nonlinearity G (u) by Sobolev imbedding
results,

a condition on the smallness of T or of u0.
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Application to mean curvature flow

The graphical mean curvature flow equation is given by

∂tu −∆u = −
n∑

i,j=1

∂iu∂ju

1 + |∇u|2
∂i∂ju (t ∈ (0,T )),

u|t=0 = u0.

(3)

Theorem

Let p ∈ (n + 2,∞). Then for all initial values u0 ∈ B
2−2/p
pp (Rn) there exists a time

interval (0,T ) with T > 0 such that (3) has a unique solution

u ∈ E = W 1
p ((0,T ); Lp(Rn)) ∩ Lp((0,T );W 2

p (Rn)).
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Maximal regularity and Fourier transform

We want to prove maximal Lp-regularity for the problem

∂tu − Au = f (t ∈ (0,∞)),

γtu = u0.

We may assume u0 = 0 (see above).

We extend f and u to the whole line t ∈ R by zero.

We will apply Fourier transform with respect to time

(Ftu)(τ) := (2π)−1/2

∫
R
u(t)e−itτdt.

Note that [
Ft(∂tu)](τ) = iτ(Ftu)(τ).

(There is a close connection to the Laplace transform.)
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Fourier transform and maximal regularity

Taking Fourier transform Ft with respect to t, we get

(
iτ − A

)
(Ftu)(τ) = (Ft f )(τ).

For maximal regularity we need

∂tu = F−1
t iτ(iτ − A)−1Ft f ∈ Lp((0,T );X ).

Theorem
The operator A has maximal Lp-regularity if and only if

F−1
t iτ(iτ − A)−1Ft

defines a continuous operator in Lp(R;X ).

Robert Denk (Konstanz) Maximal regularity March 9–12, 2021 20 / 98



Fourier multipliers

Definition

Let m ∈ L∞(Rn; L(X )) be an operator-valued symbol. The m is called an
Lp-Fourier multiplier if for every f ∈ S (Rn;X ) we have op[m]f ∈ Lp(Rn;X ) and

‖ op[m]f ‖Lp(Rn;X ) ≤ C‖f ‖Lp(Rn;X ).

In this case, we can extend op[m] to a bounded linear operator

op[m] ∈ L(Lp(Rn;X )).

To show maximal regularity for A, we have to show that the

m(τ) := iτ(iτ − A)−1

is a Fourier multiplier in Lp(R;X ).

How to prove that a symbol is a Fourier multiplier?
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R-boundedness

Definition

A family T ⊂ L(X ) of bounded linear operators is R-bounded if there exists a
constant C > 0 with

∑
ε1,...,εN=±1

∥∥∥ N∑
j=1

εjTjxj

∥∥∥
X
≤ C

∑
ε1,...,εN=±1

∥∥∥ N∑
j=1

εjxj

∥∥∥
X

for all xj ∈ X , Tj ∈ T and N ∈ N. The smallest possible C is called the R-bound
R(T ).

Setting N = 1 in the definition, we get

‖Tx‖X ≤ C‖x‖X (x ∈ X , T ∈ T ),

i.e., R-bounded implies bounded.

If X is a Hilbert space, R-bounded is equivalent to bounded.
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Vector-valued version of Mikhlin’s theorem

The following variant of Mikhlin’s theorem was crucial for maximal Lp-regularity:

Theorem (Weis 2001)

Let p ∈ (1,∞), X be a Banach space of class HT, and let
m ∈ C n(Rn \ {0}; L(X )) with

R
({
ξβ∂βξm(ξ) : ξ ∈ Rn \ {0}, β ∈ {0, 1}n

})
<∞.

Then m is a Fourier multiplier, i.e., op[m] ∈ L(Lp(Rn;X )).

This can be seen as

R-bounded symbols lead to bounded operators.

Robert Denk (Konstanz) Maximal regularity March 9–12, 2021 23 / 98



Fourier multipliers and R-boundedness

The following result gives an equivalent condition for maximal regularity.

Theorem (Weis 2001)

Let p ∈ (1,∞), let X be a Banach space of class HT, and let A be a sectorial
operator. Then the following statements are equivalent:

(i) A has maximal Lp-regularity ,

(ii) the L(X )-valued function m(τ) := iτ(iτ − A)−1 is an Lp-Fourier multiplier ,

(iii) the set {iτ(iτ − A)−1 : τ ∈ R} is R-bounded .

The equivalence of (i) and (ii) has been shown above.

For the equivalence of (ii) and (iii), one needs the vector-valued version of
Mikhlin’s theorem in one dimension.
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Vector-valued version of Mikhlin’s theorem

The following result makes an iteration possible:

Theorem (Girardi-Weis 2003)

Let 1 < p <∞, X be a Banach space of class HT with property (α), and let
{mλ : λ ∈ Λ} ⊂ C n(Rn \ {0}, L(X )) with

R
({
ξβ∂βξmλ(ξ) : ξ ∈ Rn \ {0}, β ∈ {0, 1}n, λ ∈ Λ

})
<∞.

Then the set of associated Fourier multipliers {F−1mλF : λ ∈ Λ} is R-bounded
in L(Lp(Rn;X )).

R-bounded symbols lead to R-bounded operators.

If X is a Hilbert space (e.g., X = C or X = CN), then bounded symbols lead
to R-bounded operators.
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Properties of operators

For an operator in a Banach space of class HT, we have the following implications:

A is sectorial, i.e. ‖λ(λ− A)−1‖ ≤ C for Reλ ≥ 0

m
A generates an analytic semigroup

⇑
A is R-sectorial, i.e. R

(
{λ(λ− A)−1 : Reλ ≥ 0}

)
<∞

m
A has maximal Lp-regularity for all p ∈ (1,∞)

⇑
A has bounded imaginary powers

⇑
A admits a bounded H∞-calculus
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Solving boundary value problems

Let p ∈ (1,∞), G ⊂ Rn be a bounded sufficiently smooth domain. Consider a
general linear partial differential operator

A(x ,D) =
∑
|α|≤2m

aα(x)Dα

with m ∈ N, aα : G → C, Dα := (−i)|α|∂α.

Let B1, . . . ,Bm be boundary operators of the form

Bj(x ,D) =
∑
|β|≤mj

bjβ(x ′)γ0D
β

with mj < 2m, bjβ : ∂G → C and γ0u = u|∂G .

We always assume the coefficients aα, bjβ to be sufficiently smooth.
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Parabolic differential operators

Consider the operator

A(x ,D) =
∑
|α|≤2m

aα(x)Dα.

Definition

The principal symbol of A(x ,D) is defined by

a(x , ξ) :=
∑
|α|=2m

aα(x)ξα (x ∈ G , ξ ∈ Rn).

Definition

The operator ∂t − A(x ,D) is called parabolic if

λ− a(x , ξ) 6= 0 (x ∈ G , (ξ, λ) ∈ (Rn × C+) \ {0}).

Here, C+ := {λ ∈ C : Reλ > 0}.
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The Shapiro–Lopatinskii condition

We define the principal symbol of the boundary operators

bj(x
′, ξ) :=

∑
|β|=mj

bjβ(x ′)ξβ .

Fix x ′ ∈ ∂G and choose a coordinate system associated to x ′ (i.e., x ′ = 0 and the
positive xn-axis is the direction of the inner normal). In these coordinates, apply
partial Fourier transform F ′ in tangential direction and obtain an ODE:

(λ− a(x ′, ξ′,Dn))v(xn) = 0 (xn > 0),

bj(x
′, ξ′,Dn)v(0) = hj (j = 1, . . . ,m).
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The Shapiro–Lopatinskii condition
Key observations:

The stable solutions of the homogeneous equation

(λ− a(x ′, ξ′,Dn))v(xn) = 0 (xn > 0)

are given by e iτxn with λ− a(x ′, ξ′, τ) = 0, Im τ > 0 (modification for
non-simple zeros).

m-dimensional space of stable solutions.

Let τ1, . . . , τm, τj = τj(x
′, ξ′, λ), be the zeros with positive imaginary part

and set

a+(x ′, ξ′, τ, λ) :=
m∏
j=1

(τ − τj).

The initial value problem is uniquely solvable if and only if

b1(x ′, ξ′, ·), . . . , bm(x ′, ξ′, ·)

are linearly independent modulo a+(x ′, ξ′, ·, λ).
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The Lopatinskii matrix

For j = 1, . . . ,m write

bj(x
′, ξ′, τ) ≡ cj1 + cj2τ + · · ·+ cjmτ

m−1 mod a+(x ′, ξ′, τ, λ).

with cjk = cjk(x ′, ξ′, λ).

Then b1(x ′, ξ′, ·), . . . , bm(x ′, ξ′, ·) are linearly independent modulo a+ if and only
if the matrix

L :=

c11 c12 . . . c1m

...
...

...
cm1 cm2 . . . cmm


is non-singular.

The matrix L = L(x ′, ξ′, λ) is called the Lopatinskii matrix of the boundary value
problem.
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The Shapiro–Lopatinskii condition

Definition (Shapiro-Lopatinskii condition)

Let ∂t − A(x ,D) be parabolic. Then the boundary value problem (∂t − A,B) is
called parabolic if for all x ′ ∈ ∂G , all ξ′ ∈ Rn−1 and Reλ ≥ 0, (ξ′, λ) 6= 0, the
ODE (in local coordinates)

(λ− a(x ′, ξ′,Dn))v(xn) = 0 (xn > 0),

bj(x
′, ξ′,Dn)v(0) = 0 (j = 1, . . . ,m)

has only the trivial stable solution v = 0.

Equivalent condition:

det L(x ′, ξ′, λ) 6= 0 (x ′ ∈ ∂G , ξ′ ∈ Rn−1, Reλ ≥ 0, (ξ′, λ) 6= 0).
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How to solve a boundary value problem

We want to solve

∂tu − A(x ,D)u = f in G ,

Bj(x ,D)u = gj (j = 1, . . . ,m) on ∂G .

Standard steps of reduction:

Laplace transform t  λ = iτ ,

localization and freezing the coefficients x  x0

model problems in Rn and Rn
+,

solve (λ− A(x0,D))u1 = e+f in Rn solution u1 = R(λ)e+f ,

consider u − r+u1

reduction to f = 0, with gj  hj := gj − Bj(x0,D)r+R(λ)e+f .
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The fundamental solution

We have to solve

(λ− A(x0,D))u = 0 in Rn
+,

Bj(x0,D)u = hj (j = 1, . . . ,m) on Rn−1.
(4)

Define the fundamental solution wk = wk(x0, ξ
′, ·) by

(λ− a(x0, ξ
′,Dn))wk(xn) = 0 (xn > 0),

bj(x0, ξ
′,Dn)wk(0) = δkj (j = 1, . . . ,m).

Then the solution of (4) is given by

u =
m∑
j=1

(F ′)−1wj(x0, ξ
′, xn)(F ′hj)(ξ′, 0).
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Solving the boundary value problem in Rn
+

Theorem (Solution operators)

The unique solution of the model boundary value problem in Rn
+ is given by

u = r+R(λ)e+f +
m∑
j=1

Kj

(
gj − Bj(x0,D)r+R(λ)e+f

)
.

Here R(λ) = op[(λ− a(x0, ξ))−1] is the whole-space resolvent, and the operators
Kj are defined by

(Kjϕ)(x ′, xn) := (F ′)−1wj(x
′, ξ′, xn)(F ′ϕ)(ξ′, 0),

where w1, . . . ,wm are the fundamental solutions defined above.
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R-boundedness of the solution operators

In the solution, we have the following operators:

whole-space resolvent R(λ) = op[(λ− a(x0, ξ))−1]

operators in Rn
+ of the form

(Kϕ)(x ′, xn) = (F ′)−1wj(x
′, ξ′, xn)(F ′ϕ)(ξ′, 0)

= −
∫ ∞

0

(F ′)−1(∂nwj)(x ′, ξ′, xn + yn)(F ′ϕ)(ξ′, yn)dyn

−
∫ ∞

0

(F ′)−1wj(x
′, ξ′, xn + yn)(F ′∂nϕ)(ξ′, yn)dyn.

(Poisson operators)

All these operators are R-bounded!
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Maximal regularity for boundary value problems

Let (∂t − A(x ,D),B1(x ,D), . . . ,Bm(x ,D)) be parabolic. Define AB by

D(AB) := {u ∈W 2m
p (G ) : B1(x ,D)u = . . . = Bm(x ,D)u = 0}

and ABu := A(x ,D)u.

Theorem
The Lp-realization AB has maximal Lp-regularity. Therefore, for every

f ∈ F := Lp((0,T )× G ) and every u0 ∈ γtE := B
2m−2m/p
pp (G ), there exists a

unique solution

u ∈ E := W 1
p ((0,T ); Lp(G )) ∩ Lp((0,T );W 2m

p (G ))

of the initial boundary value problem

∂tu − A(x ,D)u = f in (0,T )× G ,

Bj(x ,D)u = 0 on (0,T )× ∂G ,
u|t=0 = u0 in G .
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Maximal regularity for boundary value problems

Remarks:

We have even found a solution operator for inhomogeneous boundary
conditions:

Bj(x ,D)u = gj (j = 1, . . . ,m) on (0,T )× ∂G .

Here gj belongs to the boundary trace space

gj ∈ B
(2m−mj−1/p)/(2m)
pp ((0,T ); Lp(∂G )) ∩ Lp((0,T );B

2m−mj−1/p
pp (∂G )).

Analog results are possible for f ∈ Lp((0,T ); Lq(G )) with p 6= q.
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An non-standard example: Stefan problem

Consider the Stefan problem with Gibbs-Thomson correction (free bound-
ary problem)

∂tu −∆u = 0 in Ω±(t),

u = κ on Γ(t),

V = [∂νu] on Γ(t),

u(0) = u0 in Ω±(0),

Γ(0) = Γ0.

Ω−(t)

Ω+(t)

� Γ(t)

κ: sum of principal curvatures of Γ(t),
V : normal velocity of Γ(t),
[∂νu]: jump of normal derivatives.
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Stefan problem with Gibbs-Thomson correction

The above Stefan problem leads to the linearized model problem
(Escher-Prüss-Simonett 2003)

(∂t −∆)u = f in R+ × Rn
+,

u
∣∣
Rn−1 + ∆′ σ = g in R+ × Rn−1,

−∂nu
∣∣
Rn−1 + ∂t σ = h in R+ × Rn−1,

u|t=0 = u0 in Rn
+,

σ|t=0 = σ0 on Rn−1.

(1)

Here, ∆′ := ∂2
1 + · · ·+ ∂2

n−1. The unknowns are u describing the temperature and
σ describing (locally) the boundary as a graph. Note that

σ is defined only on the boundary Rn−1,

there is a time derivative with respect to σ (dynamic boundary condition),

this problem cannot be solved with R-sectoriality.
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Stefan problem with Gibbs-Thomson correction

The above Stefan problem leads to the linearized model problem
(Escher-Prüss-Simonett 2003)

(∂t −∆)u = 0 in R+ × Rn
+, (2)

u
∣∣
Rn−1 + ∆′ σ = g in R+ × Rn−1, (3)

−∂xnu
∣∣
Rn−1 + ∂t σ = h in R+ × Rn−1, (4)

What is the space for σ?

We have u ∈W 1
p (R+; Lp(Rn

+)) ∩ Lp(R+;W 2
p (Rn

+)) and therefore

u|Rn−1 ∈ B
1−1/(2p)
pp (R+; Lp(Rn−1)) ∩ Lp(R+;B

2−1/p
pp (Rn−1)).

From (3): σ ∈ B
1−1/(2p)
pp (R+;W 2

p (Rn−1)) ∩ Lp(R+;B
4−1/p
pp (Rn−1))

From (4): σ ∈ B
3/2−1/(2p)
pp (R+; Lp(Rn−1)) ∩W 1

p (R+;B
1−1/p
pp (Rn−1))
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The Lopatinskii matrix of the Stefan problem

(∂t −∆)u = 0 in R+ × Rn
+,

u
∣∣
Rn−1 + ∆′ σ = g in R+ × Rn−1,

−∂xnu
∣∣
Rn−1 + ∂t σ = h in R+ × Rn−1,

We apply Laplace transform Lt→λ and partial Fourier transform F ′x′→ξ′ and
obtain

(λ+ |ξ′|2 − ∂2
n)û(xn) = 0 (xn > 0).

The stable solution of this ODE is û(xn) = û(0) exp(−
√
|ξ′|2 + λ xn) which yields(

1 −|ξ′|2√
|ξ′|2 + λ λ

)(
û(0)
σ̂

)
=

(
ĝ

ĥ

)
.

This matrix is the (generalized) Lopatinskii matrix of the problem.
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Parabolicity for mixed order systems

Let A = (aij(Dx′ , ∂t))i,j=1,...,N be a mixed order system with

ord aij ≤ li + mj (i , j = 1, . . . ,N).

Then the principal symbol is defined by A0(ξ′, λ) = (a0
ij(ξ
′, λ))i,j=1,...,N with

a0
ij(ξ
′, λ) :=

{
aij,0(ξ′, λ) if ord aij = li + mj ,

0 if ord aij < li + mj .

Definition (first attempt)

The mixed order system A(Dx′ , ∂t) is called parabolic if

detA0(ξ′, λ) 6= 0 (ξ′ ∈ Rn−1, Reλ ≥ 0, (ξ′, λ) 6= (0, 0)).
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Parabolicity for mixed order systems

The Lopatinskii matrix of the Stefan problem is given by

L(ξ′, λ) =

(
1 −|ξ′|2√

|ξ′|2 + λ λ

)
.

We obtain the following order structure and principal part:

order principal symbol

no scaling, |λ| ≈ |ξ′|
2 2

0 0 2
−1 1 1

(
0 −|ξ′|2√
|ξ′|2 λ

)

parabolic scaling, |λ| ≈ |ξ′|2
1 2

0 0 2
0 1 2

(
0 −|ξ′|2√

|ξ′|2 + λ λ

)
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Parabolicity for mixed-order systems

The determinant of the principal part (with parabolic scaling) is given by

det L0(ξ′, λ) = |ξ′|2
√
|ξ′|2 + λ.

For ξ′ = 0 and λ 6= 0 we have det L0(ξ′, λ) = 0, so the Stefan problem is not
parabolic in the classical sense.

The first definition is not appropriate because

there is no fixed relation between the co-variables λ and ξ′

(i.e., time and space derivatives),

there is no principal symbol of the Lopatinskii determinant.
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The Newton polygon

The Lopatinskii determinant for the Stefan problem was given by

det L(ξ′, λ) = λ+ |ξ′|2
√
|ξ′|2 + λ.

Compare with the symbol of the heat equation: A(ξ′, λ) = λ+ |ξ′|2.

Definition

Let A(ξ′, λ) =
∑
α,k aαkλ

k(ξ′)α. Then the Newton polygon is defined as the
convex hull of all points

(|α|, k) with aαk 6= 0

and their projections onto the axes.
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(a) Heat equation: A(ξ′, λ) = λ+ |ξ′|2.
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(b) Stefan problem: A(ξ′, λ) = λ+ |ξ′|2
√
λ+ |ξ′|2.
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Definition of parabolicity for mixed-order systems

Definition

The scalar operator A(Dx′ , ∂t) is called N-parabolic if

the Newton polygon N(A) is regular, i.e. it has no edge parallel to the axes,

the estimate
|A(ξ′, λ)| ≥ C

∑
(i,k)

|λ|k |ξ′|i

holds for Reλ ≥ 0. The sum runs over all vertices of N(A).

Definition
A mixed-order system is called N-parabolic if its determinant is N-parabolic.

(Gindikin-Volevich 1992), (Mennicken-Volevich-D. 1998)
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A family of principal symbols

In the Stefan problem we have the inhomogeneous symbol

A(ξ′, λ) = det L(ξ′, λ) = λ+ |ξ′|2
√
|ξ′|2 + λ.

What is the principal symbol?

Idea: For every γ > 0 we set

|λ| ≈ |ξ′|γ

and get a family of principal symbols (πγA(ξ′, λ))γ>0:

0 < γ < 2: πγA = |ξ′|3,

γ = 2: πγA = |ξ′|2
√
λ+ |ξ′|2,

2 < γ < 4: πγA = |ξ′|2
√
λ,

γ = 4: πγA = λ+ |ξ′|2
√
λ,

γ > 4: πγA = λ.
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A family of principal symbols

Theorem

Let A(x ′,Dx′ , ∂t) be a scalar operator. Then the following statements are
equivalent:

A is parabolic in the sense of the Newton polygon.

For every γ > 0 we have

πγA(x ′, ξ′, λ) 6= 0 (Reλ ≥ 0, ξ′ 6= 0, λ 6= 0).

(Gindikin-Volevich 1992, D.-Saal-Seiler 2008, D.-Kaip 2013)

Idea of proof:

partition of unity in the covariable space determined by the geometry of the
Newton polygon,

in each subset the full symbol is a perturbation of the γ-principal part for
some γ.
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Spaces related to the Newton polygon

-

6

ξ

λ
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•

•
(r`, s`)

••

N(A)

For each vertex (r`, s`) of the Newton polygon, we consider the space

0F s`
` ((0,T ),Kr`

` (Rn))

with F` ∈ {Bp0q0 ,Hp0 ,Fp0q0}, K` ∈ {Bp1q1 ,Hp1 ,Fp1q1}, pi , qi ∈ (1,∞).

The Sobolev space related to the Newton polygon N(A) is the intersection of
these spaces:

H :=
⋂
`

0F s`
` ((0,T ),Kr`

` (Rn)).

mixture of scales can be chosen
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N-parabolic equations

Main results (Gindikin-Volevich 1992, D.-Saal-Seiler 2008, D.-Kaip 2013):

Theorem

Let A(ξ′, λ) be N-parabolic, i.e. assume that

πγA(ξ′, λ) 6= 0 (Reλ ≥ 0, λ 6= 0, ξ′ 6= 0, γ > 0).

Then A(Dx′ , ∂t) is an isomorphism in the spaces related to the Newton polygon
N(A).

The operator A(Dx′ , ∂t) can be defined as a Fourier multiplier or by a joint
H∞-calculus of the sectorial and bisectorial operators ∂t , ∂x1 , . . . , ∂xn
(Dore-Venni 2005).
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N-parabolic systems

Theorem (D.-Kaip 2013)

Let L =
(
Ljk(ξ′, λ)

)
j,k=1,...,N

be a mixed-order matrix of symbols. Assume that

det L is N-parabolic. Then L (Dx′ , ∂t) is an isomorphism

L (Dx′ , ∂t) ∈ LIsom

( N∏
j=1

Hj ,

N∏
j=1

Fj

)
,

where the spaces are defined by the Newton polygon structure of the matrix.

In each component, we have a Newton polygon space.

The description of the spaces depends on the Douglis-Nirenberg structure of
the system

ordγ(Lij) ≤ li (γ) + mj(γ)

(order functions).
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Spaces for the Stefan problem

We want to prove maximal regularity for the Stefan problem:

(∂t −∆)u = f in R+ × Rn
+,

u
∣∣
Rn−1 + ∆′ σ = g in R+ × Rn−1,

−∂nu
∣∣
Rn−1 + ∂t σ = h in R+ × Rn−1

(plus zero initial conditions).

(i) Space for f : For Lp-maximal regularity, we choose

f ∈ F := Lp((0,T ); Lp(Rn
+)).

(ii) Space for u: The natural solution space for u is

u ∈ E := 0H
1
p ((0,T ); Lp(Rn

+)) ∩ Lp((0,T );H2
p (Rn

+)).
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Spaces for the Stefan problem

We want to prove maximal regularity for the Stefan problem:

(∂t −∆)u = f in R+ × Rn
+,

u
∣∣
Rn−1 + ∆′ σ = g in R+ × Rn−1,

−∂nu
∣∣
Rn−1 + ∂t σ = h in R+ × Rn−1.

(iii) Spaces for g and h: The spaces for g and h are the boundary trace spaces:

g ∈ G := γ0E := 0B
1−1/(2p)
pp ((0,T ); Lp(Rn−1)) ∩ Lp((0,T );B2−1/p

pp (Rn−1)),

h ∈ H := 0B
1/2−1/(2p)
pp ((0,T ); Lp(Rn−1)) ∩ Lp((0,T );B1−1/p

pp (Rn−1)).

The space for σ can be determined by the Newton polygon method.
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N-parabolicity

The determinant of the Lopatinskii matrix was given by

A(ξ′, λ) := det L(ξ′, λ) = λ+ |ξ′|2
√
|ξ′|2 + λ.

This gives the family of principal symbols (πγA(ξ′, λ))γ>0:

0 < γ < 2: πγA = |ξ′|3,

γ = 2: πγA = |ξ′|2
√
λ+ |ξ′|2,

2 < γ < 4: πγA = |ξ′|2
√
λ,

γ = 4: πγA = λ+ |ξ′|2
√
λ,

γ > 4: πγA = λ.

We immediately see

πγA(ξ′, λ) 6= 0 (ξ′ ∈ Rn−1 \ {0}, Reλ ≥ 0, λ 6= 0).

Therefore, L is N-parabolic.
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Spaces for the Stefan problem

The Newton polygon method gives the space for σ:

σ ∈ S := B3/2−1/(2p)
pp ((0,T ); Lp(Rn−1))

∩ B1−1/(2p)
pp ((0,T );H2

p (Rn−1))

∩ Lp((0,T );B4−1/p
pp (Rn−1)).

-

6

H
HHHH

@
@
@

•

•

••
2 4− 1

p

1− 1
2p

3
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Maximal Lp-regularity for the Stefan problem

The Lopatinskii matrix of the Stefan problem is given by

L(ξ′, λ) =

(
1 −|ξ′|2√

|ξ′|2 + λ λ

)
.

Theorem

a) For p ∈ (1,∞) and T ∈ (0,∞), L induces an isomorphism

L(Dx′ , ∂t) : γ0E× S→ G×H, (γ0u, σ) 7→ (g , h).

b) For every f ∈ F, g ∈ G and h ∈ H, the Stefan problem has a unique solution

u ∈ E = 0H
1
p ((0,T ); Lp(Rn

+)) ∩ Lp((0,T );H2
p (Rn

+)),

σ ∈ S = 0B
3/2−1/(2p)
pp ((0,T ), Lp(Rn−1)) ∩ 0B

1−1/(2p)
pp ((0,T ),H2

p (Rn−1))

∩ Lp(J;B4−1/p
pp (Rn−1)).

(see Escher-Prüss-Simonett 2003)
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The Stefan problem in the Lp-Lq-setting

Now we consider the Stefan problem in the Lp-Lq-setting with p, q ∈ (1,∞).

Space for f : We choose

f ∈ F := Lp((0,T ); Lq(Rn
+)).

Space for u: Then the space for u is

u ∈ E := 0H
1
p ((0,T ); Lq(Rn

+)) ∩ Lp((0,T );H2
q (Rn

+)).

Spaces for f and g : they are given as boundary trace spaces

γ0u ∈ γ0E := 0F
1−1/(2q)
pq (J, Lq(Rn−1)) ∩ Lp(J,B2−1/q

qq (Rn−1)),

g ∈ G := γ0E,

h ∈ H := 0F
1/2−1/(2q)
pq (J, Lq(Rn−1)) ∩ Lp(J,B1−1/q

qq (Rn−1)).
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The Stefan problem in the Lp-Lq-setting

The space for σ is given by the Newton polygon:

σ ∈ S := 0F
3/2−1/(2q)
pq (J, Lq(Rn−1)) ∩ 0F

1−1/(2q)
pq (J,H2

q (Rn−1))

∩ Lp(J;B4−1/q
qq (Rn−1)).

-
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The Stefan problem in the Lp-Lq-setting

The Lopatinskii matrix of the Stefan problem is given by

L(ξ′, λ) =

(
1 −|ξ′|2√

|ξ′|2 + λ λ

)
.

Theorem (Kaip 2012, Meyries-Veraar 2014)

a) For p, q ∈ (1,∞) and J = (0,T ) with T <∞, L induces an isomorphism

L(∂t ,Dx′) : γ0E× S→ G×H

b) For every f ∈ F = Lp(J; Lq(Rn
+)) and every g ∈ G and h ∈ H, the Stefan

problem has a unique solution

u ∈ E = 0H
1
p (J; Lq(Rn

+)) ∩ Lp(J;H2
q (Rn

+)),

σ ∈ S = 0F
3/2−1/(2q)
pq (J, Lq(Rn−1)) ∩ 0F

1−1/(2q)
pq (J,H2

q (Rn−1))

∩ Lp(J;B4−1/q
qq (Rn−1)).
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A fluid-structure interaction model

jointly with J. Saal (2020)
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The model

We consider the following one-phase fluid-structure interaction model:

(Grandmont-Hillairet 2016; Badra-Takahashi 2017)

ρ(∂tu + (u · ∇)u))− divT (u, q) = 0, t > 0, x ∈ Ω(t),

div u = 0, t > 0, x ∈ Ω(t),

u = VΓ, t ≥ 0, x ∈ Γ(t),

1
ν·en e

τ
nT (u, q)ν = φΓ, t ≥ 0, x ∈ Γ(t),

Γ(0) = Γ0, VΓ(0) = V0, u(0) = u0, x ∈ Ω(0),

The unknowns in the model are the velocity u, the pressure q and the interface
Γ(t) = ∂Ω(t).

We assume the fluid to be incompressible and the stress to be given as

T (u, q) = 2µD(u)− qI , D(u) = 1
2 (∇u + (∇u)τ ).
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One-phase fluid-structure interaction model

ρ(∂tu + (u · ∇)u))− divT (u, q) = 0, t > 0, x ∈ Ω(t),

div u = 0, t > 0, x ∈ Ω(t),

u = VΓ, t ≥ 0, x ∈ Γ(t),

1
ν·en e

τ
nT (u, q)ν = φΓ, t ≥ 0, x ∈ Γ(t),

Γ(0) = Γ0, VΓ(0) = V0, u(0) = u0, x ∈ Ω(0),

Here, ν is the exterior unit normal at Γ, and VΓ is the velocity of Γ, where we
assume that Γ(t) is the graph of a function:

Γ(t) = {(x ′, η(t, x ′)) : x ′ ∈ Rn−1},

The elastic response is of damped Kirchhoff type :

φΓ = m(∂t , ∂
′)η := ∂2

t η + α(∆′)2η − β∆′η − γ∂t∆′η

with α, β, γ > 0. Here, ∆′ is the Laplacian in Rn−1.
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Main result: The spaces for the solution

We have the unknowns u (velocity), q (pressure), and η describing the boundary.

For u and q, we have the standard spaces (in variable domains):

u ∈ H1
p (J; Lp(Ω(t))) ∩ Lp(J;H2

p (Ω(t))),

q ∈ Lp(J; Ḣ1
p (Ω(t))),

For η, we have a non-standard space including a dominating mixed derivative
(Newton polygon space):

η ∈ Eη := B9/4−1/(4p)
pp (J; Lp(Rn−1)) ∩ H2

p (J;B1−1/p
pp (Rn−1))

∩ Lp(J;B5−1/p
pp (Rn−1)),

Hk
p : classical Sobolev space, Ḣ1

p : homogeneous Sobolev space,
Bs
pp: Besov space
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Main result: The spaces for the initial values

We have the following initial values at time t = 0:

u(0) = u0 ∈ B
2−2/p
pp (Ω(0))

Γ(0) = Γ0 which is the graph of the function

η0 ∈ B5−3/p
pp (Rn−1)

VΓ(0) = V0 with V0(x ′) = (0, η1(x ′)) (x ′ ∈ Rn−1) with

η1 ∈ B3−3/p
pp (Rn−1)

For η0 and η1, we need results on the traces of Newton polygon spaces
(D.-Saal-Seiler 2008).
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Main result

Theorem

Let n ≥ 2, p ≥ (n + 2)/3, T > 0, and J = (0,T ). Then there exists some
κ = κ(T ) > 0 such that for all initial values u0, η0 and η1 satisfying the
compatibility conditions and

‖u0‖B2−2/p
pp (Ω(0))

+ ‖η0‖B5−3/p
pp (Rn−1)

+ ‖η1‖B3−3/p
pp (Rn−1)

< κ,

there exists a unique solution (u, q, Γ) of the fluid-structure interaction system
such that Γ = graph(η) in the solution spaces above. The solution depends
continuously on the data.

One can also get short-time solution for arbitrary data.

For the physically relevant cases n = 2 and n = 3, the case p = 2 is included.
This could help for considering the singular limit γ → 0 (undamped plate
model).
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Transformation and linearization
By re-scaling, we may assume ρ = µ = 1.

Transformation to the half-space Rn
+:

θ : J × Rn
+ →

⋃
t∈J

{t} × Ω(t), (t, x ′, y) := θ(t, x ′, xn) := (t, x ′, xn + η(t, x ′)).

Here, J := (0,T ) and (x ′, xn) ∈ Rn
+ with x ′ ∈ Rn−1.

New unknowns v := θ∗u, p := θ∗q.

quasilinear system for (v , p, η)

∂tv −∆v +∇p = F (v , p, η) in J × Rn
+,

div v = G (v , η) in J × Rn
+,

v ′ = 0 on J × Rn−1,
∂tη − vn = 0 on J × Rn−1,

−2∂nv
n + p −m(∂t , ∂

′)η = H(v , η) on J × Rn−1,
v |t=0 = v0 in Rn

+,
η|t=0 = η0 in Rn−1,

∂tη|t=0 = η1 in Rn−1.

Robert Denk (Konstanz) Maximal regularity March 9–12, 2021 80 / 98



Transformation and linearization

After transformation to the fixed domain Rn
+ := {(x ′, xn) : x ′ ∈ Rn−1, xn > 0}, we

obtain a quasilinear system for the transformed unknowns v , p, and η in the time
interval J = (0,T ):

∂tv −∆v +∇p = F (v , p, η) in J × Rn
+,

div v = G (v , η) in J × Rn
+,

v ′ = 0 on J × Rn−1,
∂tη − vn = 0 on J × Rn−1,

−2∂nv
n + p −m(∂t , ∂

′)η = H(v , η) on J × Rn−1,

The non-linear right-hand sides are given as

F (v , p, η) = (∂tη −∆′η)∂nv − 2(∇′η · ∇′)∂nv + |∇′η|2∂2
nv

−(v · ∇)v + (v ′ · ∇′η)∂nv + (∇′η, 0)τ∂np,

G (v , η) = ∇′η · ∂nv ′,
H(v , η) = −∇′η · ∂nv ′ −∇′η · ∇′vn.
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The linearized system

The linearized problem is given by

∂tv −∆v +∇p = f in J × Rn
+,

div v = g in J × Rn
+,

v ′ = 0 on J × Rn−1,
∂tη − vn = 0 on J × Rn−1,

−2∂nv
n + p −m(∂t , ∂

′)η = h on J × Rn−1

(LP)

with
f ∈ Ff := Lp(J; Lp(Rn

+)),

g ∈ Fg := H1
p (J; Ḣ−1

p (Rn
+)) ∩ Lp(J;H1

p (Rn
+)),

h ∈ Fh := Lp(J; Ḃ1−1/p
pp (Rn−1)).

and with initial values u(0) = u0 ∈ B
2−2/p
pp (Rn

+), η(0) = η0 ∈ B
5−3/p
pp (Rn−1), and

∂tη(0) = η1 ∈ B
3−3/p
pp (Rn−1).
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Maximal regularity for the linearized system

Theorem (Maximal regularity)

The linearized system (LP) has a solution

v ∈ Ev := H1
p (J; Lp(Ω(t))) ∩ Lp(J;H2

p (Ω(t))),

p ∈ Ep := Lp(J; Ḣ1
p (Ω(t))),

η ∈ Eη := B9/4−1/(4p)
pp (J; Lp(Rn−1)) ∩ H2

p (J;B1−1/p
pp (Rn−1))

∩ Lp(J;B5−1/p
pp (Rn−1)),

if and only if the data (f , g , h, u0, η0, η1) belong to the spaces above and satisfy
the compatibility conditions.
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Some words on the proof

After some calculations, we obtain (on symbol level) the relation

η̂(λ, ξ′) = − |ξ′|2

NL(λ, |ξ′|)
ĥ(λ, ξ′)

with

NL(λ, |ξ′|) := |ξ′|2m(λ, ξ′) + λω2(ω + |ξ′|),
m(λ, ξ′) := λ2 + α|ξ′|4 + γλ|ξ′|2 + β|ξ′|2,

ω :=
√
λ+ |ξ′|2.

We need mapping properties of the operator NL(∂t ,
√
−∆′)

This operator can be defined by joint H∞-calculus.

The mapping properties are given by the Newton polygon theory.
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Application of the Newton polygon method

We want to study mapping properties of N(∂t ,
√
−∆′) for

NL(λ, z) := z2m(λ, z) + λ(λ+ z2)(
√
λ+ z2 + z),

where m(λ, z) := λ2 + αz4 + γλz2 + βz2 and z := |ξ′|.
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The Newton polygon method: principal parts

We want to study mapping properties of N(∂t ,
√
−∆′) for

NL(λ, z) := z2m(λ, z) + λ(λ+ z2)(
√
λ+ z2 + z),

where m(λ, z) := λ2 + αz4 + γλz2 + βz2 and z := |ξ′|.

We obtain the following principal parts:

πγ(NL(λ, z)) =


αz6, 0 < γ < 2,

(λ2 + αz4 + γλz2)z2, γ = 2,
λ2z2, 2 < γ < 4,

λ2z2 + λ5/2, γ = 4,
λ5/2, γ > 4.

Note πγ(NL(λ, z)) 6= 0 for all γ > 0, all z 6= 0 and all λ 6= 0 with Reλ ≥ 0.

NL(λ, z) is N-parabolic.
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Application of the Newton polygon method

For the linearized model, we had

η̂(λ, ξ′) = − |ξ′|2

NL(λ, |ξ′|)
ĥ(λ, ξ′).

Corollary

a) The operator NL(∂t ,
√
−∆′) : EN → Lp(J;B0

pp(Rn−1)) is an isomorphism, where

EN := 0H
5/2
p (J;B0

pp(Rn−1)) ∩ 0H
2
p (J;B2

pp(Rn−1)) ∩ Lp(J;B6
pp(Rn−1)).

b) For every h ∈ Fh = Lp(J; Ḃ
1−1/p
pp (Rn−1)), we have

η := ∆′
[
NL(∂t ,

√
−∆′)

]−1
h ∈ Eη.

This is the key step in the proof of the maximal regularity for the linear system.
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Proof of the main result for the nonlinear system

The nonlinear system was given by

∂tv −∆v +∇p = F (v , p, η) in J × Rn
+,

div v = G (v , η) in J × Rn
+,

v ′ = 0 on J × Rn−1,
∂tη − vn = 0 on J × Rn−1,

−2∂nv
n + p −m(∂t , ∂

′)η = H(v , η) on J × Rn−1,

We can write this in an abstract way as L (v , p, η) = N (v , p, η) with L
being the linear part and N the nonlinear part.

By maximal regularity, we know that L is invertible.

By construction, we have N (0) = 0 and DN (0) = 0 for the Fréchet
derivative.

The main point to show is that N maps into the correct spaces.
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Mapping properties of the nonlinearities (1)

In order to show that the nonlinearities map into the data spaces, we need
embedding results.

Example: For v ∈ Ev and η ∈ Eη, we have to show that

∂tη ∂nv ∈ Ff := Lp(J; Lp(Rn
+)).

Step 1: Embedding for ∂tη

By definition of Eη and the mixed derivative theorem, we have

η ∈ H2
p (J,B1−1/p

pp (Rn−1)) ∩ Lp(J,B5−1/p
pp (Rn−1)) ⊂ H1(J,B3−1/p

pp (Rn−1)).

For ∂tη, we obtain again by the mixed derivative theorem

∂tη ∈ B1−1/2p
pp (J, Lp(Rn−1)) ∩ Lp(J,B2−1/p

pp (Rn−1))

=: B2−1/p,(2,1)
pp (J × Rn−1)

This is an anisotropic Sobolev space.
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Mapping properties of the nonlinearities (2)

Step 2: Embedding for anisotropic Sobolev spaces

Define the anisotropic Sobolev space for s ≥ 0 by

Hs,(2,1)
p (J × Rn

+) := Hs/2
p (J; Lp(Rn

+)) ∩ Lp(J;Hs
p(Rn

+)).

Then v ∈ H
2,(2,1)
p (J × Rn

+). So we have

∂tη ∈ B2−1/p,(2,1)
pp (J × Rn−1),

∂nv ∈ H1,(2,1)
p (J × Rn

+).

Now, ∂tη ∂nv ∈ Lp(J; Lp(Rn
+)) follows from the anisotropic embedding

B2−1/p,(2,1)
pp (J × Rn−1) · H1,(2,1)

p (J × Rn
+) ⊂ H0,(1,2)

p (J × Rn
+) (p ≥ n+2

3 ).

(Köhne–Saal 2018)
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Main result

This finishes the proof of the main result.

Theorem

Let n ≥ 2, p ≥ (n + 2)/3, T > 0, and J = (0,T ). Then for all sufficiently small
data satisfying the compatibility conditions, there exists a unique solution (u, q, Γ)
of the fluid-structure interaction system such that Γ = graph(η) in the spaces

u ∈ H1
p (J; Lp(Ω(t))) ∩ Lp(J;H2

p (Ω(t))),

q ∈ Lp(J; Ḣ1
p (Ω(t))),

η ∈ B9/4−1/(4p)
pp (J; Lp(Rn−1)) ∩ H2

p (J;B1−1/p
pp (Rn−1)) ∩ Lp(J;B5−1/p

pp (Rn−1)).

Newton polygon method for the linearization

Sobolev embeddings for the nonlinear part

10
,
¥ - Ip)
t - Ep , 2)

F.%
. .

÷:* .
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The Stefan problem again
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Spin-coating

jointly with Geissert, Hieber, Saal, Sawada (2011)

Spin-coating processes are described by a Navier-Stokes equation with additional
centrifugal force terms and Coriolis force terms.

-

yttii)

>

×
.
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Spin-coating: the equations

One model for the spin-coating is given by

ρ(∂tu + (u · ∇)u) = µ∆u −∇q − ρ
[
2ω̃ × u + ω̃ × (ω̃ × χRx)

]
in Ω(t),

div u = 0 in Ω(t),

T (u, q) = σκν on Γ+(t),

V = u · ν on Γ+(t)

(+ Navier slip condition on Γ−(t) + initial values)
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Spin-coating

The Lopatinskii matrix for the top layer boundary has the symbol

L(ξ, τ) =



iξ1 iξ2 −ω 0 0

0 0 1 |ξ′|
ω(ω+|ξ′|) λ

ω 0 −iξ1 − iξ1(ω−|ξ′|)
ω(ω+|ξ′|) 0

0 ω −iξ2 − iξ2(ω−|ξ′|)
ω(ω+|ξ′|) 0

0 0 −2ω −1 σ|ξ|2


.

Here ω :=
√
λ+ |ξ′|2 and λ = iτ .

This matrix is N-parabolic.
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The Newton polygon

The Newton polygon of det L(ξ, τ) has the following form:
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Spin-coating: maximal regularity
Theorem

For sufficiently small time, we obtain for appropriate initial values (satisfying the
compatibility conditions) a unique solution

u ∈W 1
p (J; Lp(Ω(t))) ∩ Lp(J;W 2

p (Ω(t))),

q ∈ Lp(J; Ḣ1
p (Ω(t))),

η ∈ B2−1/(2p)
pp (J; Lp(Rn−1)) ∩W 1

p (J;B2−1/p
pp (Rn−1)) ∩ Lp(J;B3−1/p

pp (Rn−1)).

tt

2-
•

( 92 - Ep)
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Ey 13 - F , o)
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Further applications

The following problems are covered by the N-parabolic theory:

Generalized Lp-Lq thermoelastic plate equation in Rn

(D.-Racke 2006),

Bi-Laplacian with Wentzell boundary conditions (D.-Kunze-Ploss 2021),

Cahn-Hilliard equations (Prüss-Racke-Zheng 2006), (Wilke 2007),

Generalized Lp-Lq Stokes problem in Rn

(Bothe-Prüss 2007),

Two-phase Navier-Stokes equation with surface tension and gravity
(Prüss-Simonett 2009-2011), (Shibata-Shimizu 2011)

Two-phase Navier Stokes equation with Boussinesq-Scriven surface fluid
(Prüss-Bothe 2010),
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